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Abstract

Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub-

Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient

and poses challenges through its ability to re-emerge from dormancy in the human liver. With

observed growing drug-resistance and the increasing reports of life-threatening infections,

new tools to inform elimination efforts are needed. In order to halt transmission, we need to

better understand the dynamics of transmission, the movement of parasites, and the reser-

voirs of infection in order to design targeted interventions. The use of molecular genetics and

epidemiology for tracking and studying malaria parasite populations has been applied suc-

cessfully in P. falciparum species and here we sought to develop a molecular genetic tool for

P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) span-

ning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode

with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of

markers for within population variability, the barcode may also distinguish local transmission

networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate

the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes

in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries pre-

dominantly not used in the barcode construction, we correctly predicted the geographic region

of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping

methods and when rolled-out within new portable platforms, is likely to be an invaluable tool

for informing targeted interventions towards elimination of this resilient human malaria.
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Author summary

Plasmodium vivax is the most widespread parasite causing human malaria, with more

than one-third of the world’s population being at risk of infection. P. vivax is resilient due

to its dormant liver phase, and there are increasing reports of drug-resistance and life-

threatening infections. Despite this, P. vivax malaria is not always prioritised by elimina-

tion programmes. New molecular tools are needed to inform elimination efforts, includ-

ing through better understanding the geographical source and outbreaks of P. vivax,

thereby leading to the halting of transmission and the targeting of reservoirs of infection.

Our work describes a 71 genetic marker barcode for P. vivax that has high predictive abil-

ity to identify the geographic origin, and has the potential to distinguish local transmission

networks. If the 71 genetic marker barcode is implemented within new portable molecular

platforms, it is likely to be an invaluable tool for informing targeted interventions towards

elimination of this resilient human malaria.

Introduction

Plasmodium vivax is the predominant cause of malaria outside of sub-Saharan Africa [1,2] and

there are increasing reports of drug-resistance and severe complications that pose a threat to

children and pregnant women [3–7]. Elimination efforts have led to reductions in the preva-

lence of the deadlier P. falciparum malaria, but areas of co-endemicity have seen a correspond-

ing rise in the proportion of P. vivax infections, which appear more resilient to control

strategies [8]. In order to halt transmission of vivax, malaria programmes should focus on

identifying the main reservoirs of infection and target control measures towards these. P. vivax
has been observed in regions where malaria transmission had once been interrupted [9], and

in such a context, continuing surveillance and the use of genetic tools to identify transmission

networks within malaria outbreaks is essential. The utility of genetic tools has been demon-

strated in previous studies in low-transmission settings, such as in Malaysian Borneo [10] or

places where there are imported cases, such as in Greece [11]. Further, understanding the

transmission dynamics of the parasite populations through assessment of genetic diversity has

the potential to play a key role in guiding the elimination efforts, including by revealing trans-

mission events and identifying potential foci of infection. In recent years, genomic studies

have dissected the molecular dynamics of P. vivax populations in regions with stable transmis-

sion [12–16]. Other studies have used microsatellites to study trends in the population dynam-

ics [17–20]. The availability of whole genome sequencing data can inform the design of

“genetic barcodes” which require low numbers of SNP polymorphisms [21] but can be used to

infer transmission networks and the geographic source of infections. Molecular barcodes,

when combined with affordable delivery systems, can facilitate P. vivax epidemiological and

surveillance investigations.

Microsatellite markers have been used to reveal a spectrum of population structures in P.

falciparum [22], as well as infer transmission dynamics and complexity of infections [23].

Compared to microsatellites, SNP markers are more suitable for comparisons of both

strongly and weakly diverged populations, and in revealing ancestral patterns of genetic struc-

turing [24]. By leveraging off whole genome sequencing for population characterisation

[14,15,25,26], a number of SNP-based barcodes have been derived for P. falciparum. A barcode

based on 24 SNPs in the nuclear genome (“24-SNP barcode”) has been used to identify and

track isolates from an endemic population in Senegal [27]. This barcode harboured capacity to

identify clones from non-clones [21] using data from a limited set of long-term adapted

SNP barcoding of Plasmodium vivax

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008576 February 13, 2020 2 / 19

received funding from the MRC UK (MR/R020973/

1) and the BBSRC UK (BB/R013063/1). CR

received funding from the MRC UK (MR/M01360X/

1). The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1008576


laboratory lines [27], and has been employed on field isolates to infer local temporal changes

in genetic diversity [28]. This approach has demonstrated the potential effectiveness of such

tools in combination with epidemiological methods to elucidate transmission intensity in

malaria endemic regions [28]. Nevertheless, the use of isolates with a very limited geographical

spread to generate the barcode can underestimate the genomic variability present in other

Plasmodium populations and lead to low precision when estimating relatedness [21], thereby

impeding the transportability of the 24-SNP barcode across global malaria regions. It has been

shown that the predictive power of the 24-SNP barcode for geographical determination is

poor, especially when compared to one formed of 23 SNPs from the mitochondria and apico-

plast organellar genomes, which predicted the continental origin of samples with 92% accuracy

[29]. Another barcode formed of 105 highly frequent nuclear genome SNPs was developed to

infer transmission intensity using a geographically broader panel of isolates, thereby poten-

tially providing greater utility across malaria-endemic countries [30]. Simulations on genome-

wide data from P. falciparum has recommended the use of at least 200 barcoding SNPs for

identity by decent (IBD) analysis in haploid eukaryotes [21]. Overall, the studies in P. falcipa-
rum have demonstrated that SNP barcodes can potentially provide insights into the intensity

of transmission, identify the geographical origin of the field isolates, and inform the dynamics

of the diversity in a parasite population. These include outbreak identification, an event which

has been shown to be more likely in low-transmission settings [31].

SNP barcodes for P. vivax have been proposed, including one based on 42-SNP nuclear

polymorphisms and another on mitochondrial genome markers, but both developed to ascer-

tain the source of infection [32,33]. One limitation of these barcodes is that they were based on

relatively small datasets. As more data becomes available and geographical coverage increases,

genotyping tools with greater predictive power and wider global reach can be developed

[14–16,34]. Technological advancements in genomics can be leveraged, including the high

throughout sequencing of candidate genomic regions and portable genotyping [35].

Ultimately, the identification and integration of informative loci for P. vivax and other plasmo-

dium parasites for inferring transmission and infection source has the potential to revolution-

ise global malaria surveillance. Here, using whole genome sequencing data for 433 P. vivax
isolates across 17 countries, we applied machine learning and SNP tagging approaches from

human genome-wide association studies (GWAS) to create a 71 SNP barcode with high pre-

dictive ability for geographic origin (91.4% accuracy) and the capability to infer transmission.

We demonstrate that the barcode outperforms alternative approaches, including microsatellite

genotyping, for global geographical profiling and inferring outbreak events within a low-trans-

mission setting in Malaysia. Further, we validate the barcode by analysing the 71 SNPs in P.

vivax DNA sourced from 132 recent UK travellers to East Africa, Asia and South America.

Our work demonstrates that the 71 SNP barcode has the potential to be an invaluable tool to

help elimination efforts of this resilient neglected Plasmodium species.

Results

SNPs, samples and population structure

We aligned raw sequence data from 867 isolates [12,14–16,34,36] to the PvP01_v1 (http://

genedb.org) reference genome, and identified 1,522,046 SNPs. Isolates with high levels of miss-

ing genotype calls (> 30%) and high multiplicity of Infection (> 20% heterozygous genotypes)

were excluded from analysis. The final dataset was formed of 433 isolates (S1 Table), spanning

17 countries and 6 regions (East Africa 25; South Asia 4; Southeast Asia 242; Papua New

Guinea 26; South America 116; North America 20), and 720,340 high quality SNPs of which

SNP barcoding of Plasmodium vivax
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89.7% were non-common (minor allele frequency (MAF) < 5%) (S1 Fig, left), consistent with

previous findings [34].

A principal component analysis (PCA) revealed that the isolates clustered broadly by

regional groups: Southeast Asia (Thailand, Myanmar, Cambodia, Vietnam and Laos), South

Asian/East Asian/Southeast Asia (China), Americas (Peru, Colombia, Mexico and Brazil) and

Oceanian/Southeast Asia (Papua New Guinea, Indonesia and Malaysia) and others located

around the Arabian Sea (Fig 1). The genomic distance between intra-country isolates was on

average smaller (mean: 26,505 SNPs, range: 0–37,801 SNPs) compared to between inter-bor-

der isolates (mean: 33,160 SNPs, range: 6,034–39,676 SNPs), in line with previous studies

[14,15]. The notable exception to the pattern were isolates sourced from neighbouring Thai-

land and Myanmar, supporting evidence they belong to a similar parasite population [14],

which matches with the Thai samples being collected in the western region [15]. Despite this

exceptional situation, our analysis suggests the potential of identifying markers that could

Fig 1. Principal component (PC) analysis plot generated using 720,340 high quality SNPs across 433 P. vivax isolates reveals geographic

clustering. Isolates are coloured according to country of origin. Clustering by region can be observed, with Southeast Asian isolates appearing to group

at the bottom right of the plot, Oceania at the top right, and South American isolates on the centre left. A relative degree of clustering by country can be

observed, especially for isolates from Oceania and to a lesser extent Southeast Asia. The percentage of variation explained for each PC is shown in the

axis labels. Additional region-specific plots are shown for clarity.

https://doi.org/10.1371/journal.pgen.1008576.g001
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determine geographical origin to a country level in most settings. Intuitively, the highly skewed

distribution of the MAF towards rare variants suggests that more common SNPs are those

driving the population structure observed. To assess this hypothesis, we split the dataset into

three equally sized divisions based on SNP MAF (tertiles: < 0.002, 0.002–0.007, > 0.007; S1

Fig, right), and for each we constructed neighbour-joining trees and correlated the pair-wise

genome distance with the estimate based on all 720k SNPs (Fig 2). These comparisons revealed

the strong explanatory power harboured by those SNPs with the highest MAF (Pearson’s r2

correlation of 0.94 with the full 720k SNP set) compared to the subsets with lower MAF (Pear-

son’s r2 correlations of 0.25 and 0.27). A MAF cut-off (> 0.3) was determined (S1 Fig, right),

leading to a subset of 16,110 SNPs used as the starting point for barcode building for country

classification.

Selection of highly informative barcoding SNPs using a tagging and

machine learning approach

In order to further reduce number of markers used for barcoding construction, we applied the

software TAGster [37] to identify tagging SNPs that summarise blocks of high linkage disequi-

librium (LD), as estimated by the r2 metric across windows of size 500 kbp. The genetic

Fig 2. The sub-setting of SNPs by minimum allele frequency (MAF) reveals the strong explanatory power of high frequency SNPs in Plasmodium
vivax. Three equally sized groups of SNPs were constructed from the distribution of the minor allele frequencies: (Left) [MAF 0–0.2%], (Centre) [MAF

0.2–0.7%] and (Right) [MAF 0.7–50%]. (Top) Each of these subsets was used to construct a neighbour-Joining tree revealing only a clear geographic

clustering in the high frequency SNP group [MAF 0.7–50%]; (Middle) The Pearson’s r2 correlation of the genome distance calculation using all SNPs

and each subset separately, reveals the poor correlation for the low frequency SNPs (r2: [MAF 0–0.2%; left] 0.25, [MAF 0.2–0.7%; middle] 0.27) and a

strong correlation for the high frequency subset ([MAF 0.7–50%; right] r2 = 0.94); (Bottom) A Bland-Altman analysis comparing the differences in

genetic distance between using whole genome SNPs (“gold standard”) and each of the SNP subsets. This reveals that subsets of SNPs with low MAF

tend to overestimate the distance (panels left and centre, with mean differences -7.99 and -1.81 respectively; SD = standard deviation). Whilst, in the

high MAF subset (right) the genetic distance was underestimated (mean of differences: 0.113).

https://doi.org/10.1371/journal.pgen.1008576.g002
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variability can be captured by tagging SNPs due to the strong LD structure found in P. vivax
populations [34], and we identified 1,173 SNPs, which summarised variation in 4,896 neigh-

bouring SNPs, almost 40% of the total dataset. The 1,173 highly informative SNPs were then

used as the pool for a further selection using a random forest modelling approach. Prior to

implementation, missing alleles (4.2%) were imputed with high accuracy (< 1% error, see

Materials and methods), and a neighbour joining tree was constructed using the resulting

data, thereby confirming that no bias was introduced to the clustering patterns (S2 Fig, top).

The correlation between genome distances based on the 1,173 SNPs and whole genome

sequencing (720k SNPs) was high (Pearson’s r2 = 0.96) (S2 Fig, middle). Similarly, a Bland-

Altman analysis revealed the genetic distances between isolates obtained using the subset of

1,173 tagging SNPs were similar to those based on whole genome SNPs (S2 Fig, bottom), espe-

cially those with the highest MAF (see Fig 2, bottom right). We sought to show that the 1,173

SNPs could not only predict differences between geographical regions, but also estimate

genetic distances within intra-border isolates and identify subclades in low transmission set-

tings [31]. In particular, when analysing those isolates within a genomic distance equivalent of

<20,000 SNPs (0.74), we found a high correlation (Pearson’s r2 = 0.98) between distances

based on the 1,173 tagging and 720k genome-wide SNPs. This analysis revealed that the 1,173

high frequency tagging SNPs can not only detect strong inter-border differentiation but poten-

tially identify highly related isolates within the same country based on genomic distance.

Application of the random forest classification approach to the classification of country

involved constructing 500 trees, partitioning the dataset randomly into 80% training (n = 346)

and 20% for validation (n = 87), and using 34 variables at each nodal split. These default set-

tings have been used previously in P. falciparum genome-wide analysis with success [38]. Clas-

sification error rates became stable when 100 trees were averaged (S3 Fig, B). The final model

inside the training set performed with an overall out-of-bag error rate of 17.1%, where the

main classification errors were found across Southeast Asian populations (Thailand, Vietnam,

Cambodia, and Myanmar). These populations were identified as being highly related using the

SNP-based genomic distance (Fig 2, right), supporting previous observations [14]. The ran-

dom forest model was then used to identify the 60 SNPs with the highest predictive importance

across the trees. The 60 SNP cut-off was established using a point of inflection analysis of

cumulative predictive importance, where the addition of further SNPs does not significantly

improve predictive power (S3 Fig, B). A further 11 SNPs were chosen to summarise high

between-country genetic differentiation based on the fixation index (FST> 0.7), leading to a

final barcoding set of 71 SNPs (Table 1). Within this SNP set, there are differences in allele fre-

quency across the two main regions (Southeast Asia and South America), but no markers were

fixed across the populations. The 71 markers are in low linkage disequilibrium (S4 Fig) (LD r2:
mean 0.15, inter-quartile range 0.02–0.24), but some blocks of correlation are observed, which

can be explained by an uneven geographic distribution of the isolates.

In order to assess the potential of the barcode for geographic classification, a PCA was gen-

erated using only the 71 SNPs (Fig 3, top), and similar clustering patterns were observed to

those using the genome-wide (720k) SNP set (Fig 1). When comparing the genomic distances

obtained using the 71 barcoding to 720k genome-wide SNPs in intra-border pair-wise com-

parisons, we observed a high Pearson’s r2 correlation (0.898), providing evidence for the

potential of this barcode to not only identify geographical origin but also provide insights into

the relatedness of intra-border isolates (Fig 3, middle). Similarly, a Bland-Altman analysis

revealed little overall bias in the estimation of genetic distance between isolates using whole

genome and the 71 barcoding SNPs (Fig 3, bottom; average difference of 0.09). Using the 71

barcoding SNPs, there is a trend towards an underestimation of the genetic distance for closely

related isolates, and an overestimation for distantly related ones. The potential use of the

SNP barcoding of Plasmodium vivax
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barcode to infer intra-border relatedness and provide insights into transmission dynamics, is

supported by the observation that 98.2% (425/433) of the haplotypes obtained were unique in

the dataset. Furthermore, the 71 SNPs were used to predict the geographical source of the 20%

of the isolates (n = 87) not used to develop the random forest model. The model using only the

71 SNPs yielded an overall accuracy of 91.4% (8.6% out-of-bag error) in predicting the country

source of these 87 isolates and a further 16 Brazilian newly sequenced isolates. The 71 SNPs

outperformed a published 42-SNP barcode [33], which under the same random forest model

conditions (80%/20% training/prediction and 500 trees) obtained a 77.5% accuracy. The low

Fig 3. Geographic clustering of Plasmodium vivax isolates using the 71 SNP barcode. (Top) A principal

component (PC) analysis plot shows clustering by region and country when using the 71 SNP barcode. The percentage

of variation explained by each PC is shown in the axis labels; (Middle) A strong Pearson’s r2 correlation of 0.898 was

observed between the genetic distances based on genome-wide (n = 720k) and 71 barcoding SNPs, revealing the

potential for the barcode to identify closely related intra-border isolates; (Bottom) A Bland-Altman analysis

comparing the differences in genetic distance between using whole genome SNPs (“gold standard”) and the 71 SNP

barcode.

https://doi.org/10.1371/journal.pgen.1008576.g003
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accuracy of the 42-SNP barcode can also be observed in the ambiguous clustering found in the

PCA (S5 Fig, top) and neighbour-joining tree (S5 Fig, bottom). Furthermore, the correlation

between genetic distances based on the SNP barcode and genome-wide (720k) SNPs was lower

(Pearson’s r2 = 0.59).

In-silico testing of the barcode in a near-elimination setting in Malaysia

A field-ready SNP barcode with the potential for being deployed in low-transmission settings

has to be proven efficacious in settings where the identification of foci of infection and

imported cases are of key relevance. We used a dataset comprising 60 P. vivax isolates,

sourced from Sabah Malaysia, where the population dynamics have been extensively studied

using microsatellite markers and whole genome sequencing [31]. In silico characterization

using the 71 SNP barcode in a PCA analysis identified two main populations, denoted previ-

ously as K1 and K2 (Fig 4A). K2 comprised of 26 almost genetically identical isolates in a

known transmission outbreak, previously supported using a set of nine microsatellite

markers [31]. The estimated genetic distances between isolates based on the 71 SNPs were

strongly correlated with those based on the genome-wide SNPs (Pearson’s r2 = 0.88). The

outbreak isolates shared the same haplotype across the barcoding polymorphisms in most

cases, with only 3 isolates presenting a one SNP difference. There was one notable exception

(ERR1475456) which presented a larger genetic distance (Fig 4A). This isolate shared the

same microsatellite haplotype as the outbreak K2, but the genomic distance from the samples

in the rest of the outbreak samples was greater, and therefore likely to be of independent ori-

gin (Fig 4B). A neighbour-joining tree constructed using the 71 SNPs revealed clustering by

administrative division in Sabah Malaysia, indicating its potential for tracking of cases from

different health authorities (Fig 4C).

Prospective testing of the barcode using traveller genotype data

The genotypes for the 71 barcoding SNPs were characterised in 132 P. vivax DNA sourced

from returning travellers to the UK from ten endemic countries (n = 132; Afghanistan

(n = 26), Bangladesh (n = 1), Eritrea (n = 11), Ethiopia (n = 6), Guyana (n = 3), India (n = 38),

Pakistan (n = 35), the Philippines (n = 1), Sudan (n = 7) and Uganda (n = 4)). The genotypes

were used to construct a combined PCA plot for the 132 prospective and 433 barcode-develop-

ment isolates, which revealed clear clustering by geographic region (Fig 5). The isolates co-

localised in the PCA with the previously determined wider-regional populations, including

East Africa, South Asia, Southern Southeast Asia and South America. A PCA based only on

prospectively collected data (n = 132) (S6 Fig) revealed a clear regional pattern, but no strong

clustering at a country level. The country source was predicted using the 71 SNP barcoding

genotypes for each prospective isolate. An 80.1% country-level prediction was obtained for

those isolates with countries represented in the training data (Ethiopia and India). For valida-

tion isolates that were sourced from countries in Central and South Asia (Afghanistan and

Pakistan) and East Africa (Sudan, Uganda and Eritrea) that were not included in the SNP bar-

code, the predictions reflected the nearest countries included in the development process.

Discussion

Plasmodium vivax accounts for a significant proportion of the global malaria burden, with the

greatest incidence outside of sub-Saharan Africa [2]. The resilience of the parasite is evidenced

by its re-appearance in regions where malaria transmission had previously been halted [9].

Microsatellite genotyping has been used to study P. vivax genomic and population dynamics,

although it underestimates the total variability in natural populations [39]. Whole genome
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sequencing is the gold standard approach but is currently logistic- and cost-inefficient for

large genomic epidemiological studies, especially in under-resourced endemic areas. We have

a developed in-silico a 71 SNP barcode, informed by whole genome sequencing data from 433

isolates across 17 different countries worldwide. To date, barcodes in Plasmodium species have

Fig 4. Use of the 71 SNP barcode in Plasmodium vivax isolates from Sabah, Malaysia reveals patterns of

transmission. A dataset of 60 isolates from a near-elimination setting that has been exhaustively characterised by

whole genome sequencing in [31] was analysed here by means of a principal component analysis (PCA) using the 71

SNP barcode from our study. (A) The principal component (PC) analysis revealed the previously reported outbreak

population (K2, yellow). However, there was one “K2” isolate showing distant clustering (ERR1475456, highlighted

with arrows in the three panels); (B) The distribution of pairwise genome SNP distances for each of the isolates in the

outbreak, showing that ERR1475456 is not as closely related to the outbreak as indicated by microsatellite genotyping

in [31]; (C) A neighbour-joining tree revealed isolates from the West Coast Division in Sabah (dashed lines) clustering

together; isolates are coloured in the tree according to cluster.

https://doi.org/10.1371/journal.pgen.1008576.g004
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each been designed for specific roles. Some barcodes have focused on the determination of the

geographical origin of the samples using nuclear or organellar genomic markers [29,32], others

on measuring transmission intensity using the frequency of unique haplotypes [28,33] or the

complexity of the infections [30]. Further, P. vivax barcodes have been based on small datasets

featuring fewer geographic populations [34]. As more datasets become available genotyping

tools such as our barcode will have global applicability. In fact, application of a 42-SNP bar-

code [33] to our dataset led to a lower accuracy (77.5%) when predicting origin of the isolates

at a country level. The 42-SNP barcode also performed sub-optimally when estimating SNP-

based relatedness of isolates, and therefore may not be suited to the inference of local transmis-

sion networks.

Our barcode was constructed by recognising that common SNPs are more robust markers

and harbour greater explanatory power for both geographical and transmission inference, as

demonstrated previously in human genetic studies [40]. By triaging SNPs using established LD

tagging methods, it was possible to apply random forest methodology to select 60 markers,

augmented by 11 inter-continental SNPs, to accurately predict country of source (91.4%).

Whilst there are alternatives to the random forest algorithm, this approach has become an

established data analysis tool in bioinformatics, with reported high performance in settings

where the number of variables is much larger than the number of observations [38]. The meth-

odology has an ability to explore complex interactions between correlated SNPs, and return

useful measures of their predictive importance [41,42]. The set of “important” SNP predictors

of country determined by the random forest approach was robust to initial model parameteri-

sation, and the final model and set of SNPs were validated on a 20% subset of the original

samples augmented by prospectively collected ones from Brazil. The 71 SNP barcode and

intermediate SNP sets informing its construction were used to reconstruct principal

Fig 5. The principal component (PC) analysis plot of the 565 P. vivax isolates, constructed using the 71 SNP barcode. The isolates include the 433

used in the design of the barcode (circles) and the 132 prospective UK traveller samples (stars). The plot shows clear geographic region clustering,

with the traveller samples from each region (strong star-dots for each colour) overlapping with the previously sequenced data (light circular-dots for

each colour). The percentage of variation explained for each PC is shown in the axis labels.

https://doi.org/10.1371/journal.pgen.1008576.g005

SNP barcoding of Plasmodium vivax

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008576 February 13, 2020 12 / 19

https://doi.org/10.1371/journal.pgen.1008576.g005
https://doi.org/10.1371/journal.pgen.1008576


component analysis plots. These plots were consistent with the overall population structure

based on 720k SNP markers, and therefore confirm there was no major loss of geographical

specificity.

Our 71 SNP barcode is the first that shows such strong levels of accuracy in geographic pre-

diction at a country level in P. vivax for a diverse dataset, making it a valuable tool for the

detection of imported cases of malaria. As whole genome data becomes available, especially

from sites with currently poor coverage such as central America, Africa and South Asia, the

machine learning approach can be used to update the SNPs in the barcode. The barcode was

also designed to be able to provide information about potential transmission trends and there-

fore be useful in field settings, where large genomic differences are less likely, with the excep-

tion of imported cases. The proportion of unique haplotypes identified across the dataset was

high (98.2%; 425/433 haplotypes observed), which allows greater scope for informing on intra-

border haplotype diversity, including low diversity such as in an outbreak setting. A simulation

study using P. falciparum genome sequencing and P. vivax microsatellite data has estimated

that 200 biallelic markers should be used for IBD analysis [21]. In our study, using whole

genome sequencing data on P. vivax we demonstrate the potential of a 71 SNP barcode to esti-

mate genetic distance (SNP differences) as a measure of relatedness and to predict geographic

origin to the country level. Further work could be aimed at assessing and expanding this set of

markers and explore its potential use for IBD analysis specifically focusing on intra-border

transmission. This potential utility for transmission characterisation was demonstrated by the

use of intra-border highly related isolates, where we confirmed that the SNP distances based

on the 71-SNP barcode and genome-wide 720k markers were highly correlated, and represent

an improvement on comparative reported values for microsatellites (Pearson’s r2 = 0.70) [39].

Further, the use of the 71 SNP barcode was validated in silico using data from 60 P. vivax
sourced from a low endemic and near-elimination setting in Malaysia, where it was possible to

partition the population into highly structured subclades and confirm the presence of an out-

break cluster, previously identified using both microsatellite genotyping and sequencing. Also,

by using the 71-SNP barcode we identified a misclassified “outbreak” isolate with an identical

microsatellite haplotype, and evidence of regional clustering by the different administrative

divisions, further supporting the utility of the tool and its superior performance to microsatel-

lite genotyping. One of the challenges when studying P. vivax infections is the difficulty to dif-

ferentiate recrudescent infections from reinfections or relapses [43–46]. Although, we have

not explored the ability of our barcode to differentiate between such cases, based on the results

from the Malaysian setting we anticipate it would at least be able to identify cases of relapse

caused by meiotic siblings [44]. This is because of the high degree of similarity expected in

such cases already picked up in clonal expansions, although specific work would be needed to

address this challenge.

The barcode was also tested on 132 newly assessed isolates sourced from travelers to 10 dif-

ferent countries across the main P. vivax endemic regions, revealing that the 71 SNPs have a

strong regional discriminatory power, and achieved an 80.1% overall accuracy in classifying

the isolates at a country level for the countries represented in the barcode development. The

PCA performed using the 71 SNPs showed that isolates originating from geographically dis-

tant regions (e.g. South Asia) clustered, and demonstrated the ability of the barcode to identify

regional signatures even for previously unstudied locations. Nevertheless, the next step in

order to improve our barcode would be the incorporation of the whole genome sequencing

data from these isolates and future collections. Further, it is possible to genotype the barcoding

SNPs using standard TaqMan genotyping assays or PCR followed by high resolution melting

analysis, as previously described for other malaria SNP barcodes [27, 33]. It is also possible to

apply amplicon sequencing using a portable sequencer, such as the MinION nanopore
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platform linked to a laptop computer. This approach was applied recently to genotype P. falcip-
arum parasites [47].

In summary, we have presented a new in-silico molecular barcode for P. vivax that can

provide information on both geographical origin and identify highly related isolates within

country borders to help infer transmission events and identify foci of infection. The 71 SNP

barcode out-competes previous genotyping methods and is a powerful and potentially afford-

able solution that could enable the execution of large genomic epidemiological studies, with

high throughput assessment of large numbers of parasites. By leveraging off growing and large

datasets of whole genome sequencing data, and the power of machine learning algorithms, it

will be possible to update the barcode, augment it with drug resistance markers, and imple-

ment it rapidly in field-based settings using portable technologies. Ultimately, insights into

genetic diversity will assist the much-needed understanding of the dynamics of P. vivax popu-

lations and inform disease control decision making.

Materials and methods

Genomic data generation

Illumina sequenced data from previously published studies [14–16] was downloaded from

ENA repository to form a total dataset of 834 isolates. Some of these data are from the Malaria-

GEN P. vivax Genome Variation project. Each isolate data was mapped against the PvP01_v1

reference (obtained from http://genedb.org) using bwa-mem [47]. SNPs (n = 1,522,046) were

called from the resulting alignments using the samtools software suite [48], as previously

described [34]. Isolates and SNPs were excluded if they presented with> 20% missing or het-

erozygous genotype calls, and additional SNPs were removed if located within hypervariable

gene regions (e.g. vir genes). The final dataset consisted of 720,340 high-quality SNPs and 433

isolates.

Population structure and tag SNP selection

The 720,340 high-quality biallelic SNPs and its subsets were used to infer distance matrices by

calculating Manhattan distances (”identity-by-state”) between samples. These genetic dis-

tances where divided by the sum of the allele frequencies of the SNPs included in their calcula-

tion, in order to make the units comparable. These matrices were used to generate principal

component analysis (PCA) plots and neighbour-joining trees (R ape package [49]). The Pear-

son’s r2 metric, calculated using the R base function cor, was used to estimate the correlation

between distance matrices. A Bland-Altman analysis comparing genetic distances based on

different sets of SNPs was performed using the R BlandAltmanLeh library. The software

TAGster [37] was used to identify SNPs which summarise blocks of high linkage disequilib-

rium, as estimated using the genetic r2 metric. We specified an r2 threshold of at least 0.7 for

inclusion in a block and a window size of 500 kbp, leading to 16,110 SNPs with minor allele

frequency> 0.3 being included for analysis. The resulting 1,173 tag SNPs identified were then

further characterized for downstream analysis. The Fixation index (FST) was calculated using

in house R scripts and a threshold of FST> 0.7 was used to determine population-level infor-

mative barcoding SNPs [25,34]. A flow diagram summarising the selection process of the

SNPs is presented in S7 Fig.

Barcode SNP selection using a random forest approach

The selected 1,173 highly informative SNPs obtained using a combination of minor allele

frequency and SNP tagging approaches were extracted from the original dataset. Allele
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imputation was performed on the missing data points (4.2%) in the dataset using the R mis-
sForest package [50]. This yielded an estimated out-of-bag error in the imputation of 16.2%

which left a total of 0.7% potentially erroneous calls. After imputation, a random selection of

80% of the dataset was assigned as a training set and the remaining 20% was assigned as a test

dataset. Source country was tested as the predicted variable. Subsequently, five hundred trees

were calculated using the RandomForest [51] package in R in order to determine the SNPs in

the dataset with highest importance for classification of samples into countries. We then

selected the 60 SNPs with highest importance and used the R LDcorSV package [52] to calcu-

late the correlation between the markers. PCA plots and neighbour-joining trees were con-

structed for this subset of SNPs. The final subset of 71 SNPs was then used to retrain the

random forest model on the training set, and this model was applied for the prediction of the

country of origin in the validation dataset.

Validation of the barcode using UK traveller isolate genotype data

DNA was extracted from blood samples sourced from 132 returning travellers to the UK from

endemic areas between 2017 and 2018. The 132 samples were sourced from travellers to

Afghanistan (n = 26), Bangladesh (n = 1), Eritrea (n = 11), Ethiopia (n = 6), Guyana (n = 3),

India (n = 38), Pakistan (n = 35), the Philippines (n = 1), Sudan (n = 7) and Uganda (n = 4).

The blood samples are stored in the Public Health England (PHE) Malaria Reference Labora-

tory (MRL) at the LSHTM. The DNA underwent Illumina MiSeq 150bp paired-end sequenc-

ing at the LSHTM. The resulting data was aligned to the P. vivax PvP01_v1 reference genome

using bwa-mem (see [34,53] for the bioinformatics pipeline), thereby allowing the calling of

the genotypes at the 71 positions (S2 Table). The validation isolates were not used in the con-

struction of the random forest model. The PHE and LSHTM ethics boards provided approval

for the sequencing of the P. vivax DNA.
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S1 Table. The 433 high-quality P. vivax isolates used for the development of the barcode.

(XLSX)

S2 Table. The barcoding genotypes and country metadata for the 132 P. vivax prospective

UK traveller isolates.

(XLSX)

S1 Fig. (Left) Distribution of SNPs according to minor allele frequency (MAF); (Right)

SNPs partitioned into three equally sized divisions based on MAF (blue dashed lines), and

a cut-off of MAF > 0.3 (red dashed line) was used to pre-select SNPs for downstream anal-

ysis.

(TIFF)

S2 Fig. (Top) Neighbour-joining tree based on 1,173 tagging SNPs in P. vivax selected

using the TAGster [37] software shows strong similarity with the tree from Fig 2 (right),

observing a strong geographical signal; (Middle) the correlation of genome distance based

on whole genome sequencing (WGS; 720k SNPs) with the subset of tagging (1,173) SNPs is

high (Pearson’s r2 = 0.98); (Bottom) A Bland-Altman analysis that compares the differ-

ences in genetic distance between those based on the whole genome and the subset of 1,173

tagging SNPs; it shows a slight underestimation of the distance measured by the tagging

SNPs (mean of differences: 0.177; with standard deviation (SD)).

(TIFF)
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S3 Fig. (A) Classification error for the different geographic categories across the 500 trees

in the random forest model reaches stability when 100 trees are averaged; (B) Variable

importance estimated from the random forest model for the number of 1,173 tagging

SNPs. The red dashed line is the cut-off based on importance, which is the threshold used to

determine SNP inclusion in the barcode.

(TIFF)

S4 Fig. The low linkage disequilibrium (LD) between the 71 SNPs in the Plasmodium
vivax. An overall low correlation (LD) was found between the 71 SNPs (mean linkage r2 =

0.15). LD blocks were observed and correspond to SNPs with geographic signal (i.e. Southeast

Asian high frequency SNPs).

(TIFF)

S5 Fig. The principal component analysis (PCA) plot and neighbour-joining tree con-

structed using a previously published 42-SNP barcode [33]. It shows ambiguous geographic

clustering of P. vivax isolates. Geographical clustering by region was apparent, although a

degree of overlap was observed and separation by country was not clear. This result is sug-

gested by the low accuracy (77.5%) obtained when predicting geographical origin using a ran-

dom forest model formed with the set of 42-SNPs.

(TIFF)

S6 Fig. The principal component analysis (PCA) plot for the 132 P. vivax prospective UK

traveller isolates, constructed using the 71 barcoding SNP genotypes. There is clustering by

geographical region, including between Eastern Africa countries (Ethiopia, Eritrea, Sudan and

Uganda), South/Central Asia (Pakistan, India, Bangladesh, Afghanistan), Guyana (South

America) and the Philippines.

(TIFF)

S7 Fig. Flow diagram of the SNP selection process for the 71 SNP barcode.

(TIFF)
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