21 research outputs found

    Studies on the exaggerated inflammatory response caused by streptococcus suis at systemic and central nervous system levels

    Full text link
    Streptococcus suis de type 2 est un microorganisme pathogĂšne d’importance chez le porc. Il est la cause de diffĂ©rentes pathologies ayant comme caractĂ©ristique commune la mĂ©ningite. C’est Ă©galement un agent Ă©mergeant de zoonose : des cas cliniques humains ont rĂ©cemment Ă©tĂ© rapportĂ©s en Asie. Cependant, la pathogĂ©nĂšse de S. suis n’est pas encore complĂštement Ă©lucidĂ©e. Jusqu’à prĂ©sent, la rĂ©ponse pro-inflammatoire initiĂ©e par S. suis n’a Ă©tĂ© Ă©tudiĂ©e qu’in vitro. L’étude du choc septique et de la mĂ©ningite requiert toujours des modĂšles expĂ©rimentaux appropriĂ©s. Au cours de cette Ă©tude, nous avons dĂ©veloppĂ© un modĂšle in vivo d’infection chez la souris qui utilise la voie d’inoculation intra-pĂ©ritonĂ©ale. Ce modĂšle a servi Ă  l’étude de la rĂ©ponse pro-inflammatoire associĂ©e Ă  ce pathogĂšne, tant au niveau systĂ©mique qu’au niveau du systĂšme nerveux central (SNC). Il nous a Ă©galement permis de dĂ©terminer si la sensibilitĂ© aux infections Ă  S. suis pouvait ĂȘtre influencĂ©e par des prĂ©dispositions gĂ©nĂ©tiques de l’hĂŽte. Le modĂšle d’infection par S. suis a Ă©tĂ© mis au point sur des souris de lignĂ©e CD1. Les rĂ©sultats ont dĂ©montrĂ© une bactĂ©riĂ©mie Ă©levĂ©e pendant les trois jours suivant l’infection. Celle-ci Ă©tait accompagnĂ©e d’une libĂ©ration rapide et importante de diffĂ©rentes cytokines pro-inflammatoires (TNF-α, IL-6, IL-12p40/p70, IFN-ÉŁ) et de chĂ©mokines (KC, MCP-1 and RANTES), qui ont entraĂźnĂ© un choc septique et la mort de 20 % des animaux. Ensuite, pour confirmer le rĂŽle de l’inflammation sur la mortalitĂ© et pour dĂ©terminer si les caractĂ©ristiques gĂ©nĂ©tiques de l’hĂŽte pouvaient influencer la rĂ©ponse inflammatoire et l’issue de la maladie, le modĂšle d’infection a Ă©tĂ© Ă©tendu Ă  deux lignĂ©es murines consanguines diffĂ©rentes considĂ©rĂ©es comme rĂ©sistante : la lignĂ©e C57BL/6 (B6), et sensible : la lignĂ©e A/J. Les rĂ©sultats ont dĂ©montrĂ© une importante diffĂ©rence de sensibilitĂ© entre les souris A/J et les souris B6, avec un taux de mortalitĂ© atteignant 100 % Ă  20 h post-infection (p.i.) pour la premiĂšre lignĂ©e et de seulement 16 % Ă  36 h p.i. pour la seconde. La quantitĂ© de bactĂ©ries dans le sang et dans les organes internes Ă©tait similaire pour les deux lignĂ©es. Donc, tout comme dans la lignĂ©e CD1, la bactĂ©riĂ©mie ne semblait pas ĂȘtre liĂ©e Ă  la mort des souris. La diffĂ©rence entre les taux de mortalitĂ© a Ă©tĂ© attribuĂ©e Ă  un choc septique non contrĂŽlĂ© chez les souris A/J infectĂ©es par S. suis. Les souris A/J prĂ©sentaient des taux exceptionnellement Ă©levĂ©s de TNF-α, IL-12p40/p70, IL-1ÎČ and IFN- Îł, significativement supĂ©rieurs Ă  ceux retrouvĂ©s dans la lignĂ©e B6. Par contre, les niveaux de chĂ©mokines Ă©taient similaires entre les lignĂ©es, ce qui suggĂšre que leur influence est limitĂ©e dans le dĂ©veloppement du choc septique dĂ» Ă  S. suis. Les souris B6 avaient une production plus Ă©levĂ©e d’IL-10, une cytokine anti-inflammatoire, ce qui suppose que la cascade cytokinaire pro-inflammatoire Ă©tait mieux contrĂŽlĂ©e, entraĂźnant un meilleur taux de survie. Le rĂŽle bĂ©nĂ©fique potentiel de l’IL-10 chez les souris infectĂ©es par S. suis a Ă©tĂ© confirmĂ© par deux approches : d’une part en bloquant chez les souris B6 le rĂ©cepteur cellulaire Ă  l’IL-10 (IL-10R) par un anticorps monoclonal anti-IL-10R de souris et d’autre part en complĂ©mentant les souris A/J avec de l’IL-10 de souris recombinante. Les souris B6 ayant reçu le anticorps monoclonal anti-IL-10R avant d’ĂȘtre infectĂ©es par S. suis ont dĂ©veloppĂ© des signes cliniques aigus similaires Ă  ceux observĂ©s chez les souris A/J, avec une mortalitĂ© rapide et Ă©levĂ©e et des taux de TNF-α plus Ă©levĂ©s que les souris infectĂ©es non traitĂ©es. Chez les souris A/J infectĂ©es par S. suis, le traitement avec l’IL-10 de souris recombinante a significativement retardĂ© l’apparition du choc septique. Ces rĂ©sultats montrent que la survie au choc septique dĂ» Ă  S. suis implique un contrĂŽle trĂšs prĂ©cis des mĂ©canismes pro- et anti-inflammatoires et que la rĂ©ponse anti-inflammatoire doit ĂȘtre activĂ©e simultanĂ©ment ou trĂšs rapidement aprĂšs le dĂ©but de la rĂ©ponse pro-inflammatoire. GrĂące Ă  ces expĂ©riences, nous avons donc fait un premier pas dans l’identification de gĂšnes associĂ©s Ă  la rĂ©sistance envers S. suis chez l’hĂŽte. Une des rĂ©ussites les plus importantes du modĂšle d’infection de la souris dĂ©crit dans ce projet est le fait que les souris CD1 ayant survĂ©cu Ă  la septicĂ©mie prĂ©sentaient dĂšs 4 jours p.i. des signes cliniques neurologiques clairs et un syndrome vestibulaire relativement similaires Ă  ceux observĂ©s lors de mĂ©ningite Ă  S. suis chez le porc et chez l’homme. L’analyse par hybridation in situ combinĂ©e Ă  de l’immunohistochimie des cerveaux des souris CD1 infectĂ©es a montrĂ© que la rĂ©ponse inflammatoire du SNC dĂ©butait avec une augmentation significative de la transcription du Toll-like receptor (TLR)2 et du CD14 dans les microvaisseaux cĂ©rĂ©braux et dans les plexus choroĂŻdes, ce qui suggĂšre que S. suis pourrait se servir de ces structures comme portes d’entrĂ©e vers le cerveau. Aussi, le NF-ÎșB (suivi par le systĂšme rapporteur de l’activation transcriptionnelle de IÎșBα), le TNF-α, l’IL-1ÎČ et le MCP-1 ont Ă©tĂ© activĂ©s, principalement dans des cellules identifiĂ©es comme de la microglie et dans une moindre mesure comme des astrocytes. Cette activation a Ă©galement Ă©tĂ© observĂ©e dans diffĂ©rentes structures du cerveau, principalement le cortex cĂ©rĂ©bral, le corps calleux, l’hippocampe, les plexus choroĂŻdes, le thalamus, l’hypothalamus et les mĂ©ninges. Partout, cette rĂ©action pro-inflammatoire Ă©tait accompagnĂ©e de zones extensives d’inflammation et de nĂ©crose, de dĂ©myĂ©linisation sĂ©vĂšre et de la prĂ©sence d’antigĂšnes de S. suis dans la microglie. Nous avons menĂ© ensuite des Ă©tudes in vitro pour mieux comprendre l’interaction entre S. suis et la microglie. Pour cela, nous avons infectĂ© des cellules microgliales de souris avec la souche sauvage virulente (WT) de S. suis, ainsi qu’avec deux mutants isogĂ©niques, un pour la capsule (CPS) et un autre pour la production d’hĂ©molysine (suilysine). Nos rĂ©sultats ont montrĂ© que la capsule Ă©tait un important mĂ©canisme de rĂ©sistance Ă  la phagocytose pour S. suis et qu’elle modulait la rĂ©ponse inflammatoire, en dissimulant les composants pro-inflammatoires de la paroi bactĂ©rienne. Par contre, l’absence d’hĂ©molysine, qui est un facteur cytotoxique potentiel, n’a pas eu d’impact majeur sur l’interaction de S. suis avec la microglie. Ces Ă©tudes sur les cellules microgliales ont permis de confirmer les rĂ©sultats obtenus prĂ©cĂ©demment in vivo. La souche WT a induit une rĂ©gulation Ă  la hausse du TLR2 ainsi que la production de plusieurs mĂ©diateurs pro-inflammatoires, dont le TNF-α et le MCP-1. S. suis a induit la translocation du NF-kB. Cet effet Ă©tait plus rapide dans les cellules stimulĂ©es par le mutant dĂ©ficient en CPS, ce qui suggĂšre que les composants de la paroi cellulaire reprĂ©sentent de puissants inducteurs du NF-kB. De plus, la souche S. suis WT a stimulĂ© l’expression de la phosphotyrosine, de la PKC et de diffĂ©rentes cascades liĂ©es Ă  l’enzyme mitogen-activated protein kinase (MAPK). Cependant, les cellules microgliales infectĂ©es par le mutant dĂ©ficient en CPS ont montrĂ© des profils de phosphorylation plus forts et plus soutenus que celles infectĂ©es par le WT. Finalement, la capsule a aussi modulĂ© l’expression de l’oxyde nitrique synthĂ©tase inductible (iNOS) induite par S. suis et par la production subsĂ©quente d’oxyde nitrique par la microglie. Ceci pourrait ĂȘtre liĂ© in vivo Ă  la neurotoxicitĂ© et Ă  la vasodilatation. Nous pensons que ces rĂ©sultats contribueront Ă  une meilleure comprĂ©hension des mĂ©canismes sous-tendant l’induction de l’inflammation par S. suis, ce qui devrait permettre, d’établir Ă©ventuellement des stratĂ©gies plus efficaces de lutte contre la septicĂ©mie et la mĂ©ningite. Enfin, nous pensons que ce modĂšle expĂ©rimental d’infection chez la souris pourra ĂȘtre utilisĂ© dans l’étude de la pathogĂ©nĂšse d’autres bactĂ©ries ayant le SNC pour cible.Streptococcus suis serotype 2 is an important swine pathogen responsible for diverse infections, meningitis being its most striking feature. In addition, it is an emerging agent of zoonosis, which has gained worldwide attention due to important outbreaks in Asia. Understanding the pathogenesis of S. suis infections still represents a challenge. Up to present, the pro-inflammatory response due to S. suis has only been studied in vitro, and there is still a great need of appropriate experimental models for both septic shock and meningitis. In the present study, we successfully developed an in vivo model of S. suis infection in adult mice infected by the intraperitoneal route. This model served to investigate the pro-inflammatory events that take place at both the systemic and Central Nervous System (CNS) levels associated with this important pathogen. In addition, this model was useful to determine if susceptibility to S. suis infection may be influenced by the genetic background of the host. The mouse model of S. suis infection was standardized in CD1 mice. Results showed sustained bacteremia during the 3 days post-infection (p.i.), accompanied by a quick and substantial release of different pro-inflammatory cytokines (TNF-α, IL-6, IL-12p40/p70, IFN-ÉŁ) and chemokines (KC, MCP-1 and RANTES) that lead to septic shock and 20% mortality in mice. Once the hallmark of the septic phase of S. suis infection was established in CD1 mice, research continued with the objective to confirm the role of inflammation in mortality and to determine if the genetic background of the host may influence the inflammatory response toward this pathogen and the further outcome of the disease. For this, the mouse model of S. suis infection was used with two genetically different inbred mouse strains, this is, C57BL/6 (B6) and A/J mice, which are considered as the prototype of Th1-type and Th2-type mice, respectively. Results demonstrated a striking susceptibility to S. suis infection in A/J mice in comparison to B6 mice, with 100% mortality in the former mice strain at 20 h p.i., and 16 % mortality at 36 h p.i. for the latter. Very interestingly, and similarly to CD1 mice, bacteremia did not seem to be responsible for the death of mice, as both mice strains presented similar amounts of bacteria in blood and organs. Thus, it was postulated that the higher mortality in S. suis-infected A/J mice was due to uncontrolled septic shock. In fact, A/J mice presented very high levels of TNF-α, IL-12p40/p70, IL-1ÎČ and IFN-ÉŁ, that significantly exceeded those found in B6 mice. Remarkably, chemokine levels were similar between strains, suggesting their limited participation in the development of septic shock by S. suis. A greater survival of B6 mice was partially related to a better regulation of the pro-inflammatory cytokine cascade, as they showed a higher production of the anti-inflammatory cytokine IL-10 than A/J mice. The potential beneficial role of the IL-10 in mice infected with S. suis was confirmed using two approaches: the first, by blockage of the cell receptor of IL-10 (IL-10R) with an anti-mouse IL-10R monoclonal antibody (Mab) in B6 mice and the second by administrating recombinant mouse (rm)IL-10 (rmIL-10) to A/J mice. B6 mice that received the IL-10R MAb treatment before challenge with S. suis developed a clinical acute disease similar to that observed with A/J mice, with a striking and rapid increase in mortality and higher levels of TNF-α in comparison to those of infected mice that did not receive the treatment. Controversially, treatment with rmIL-10 significantly delayed the onset of septic shock in A/J mice infected with S. suis. These results show that survival from S. suis septic shock requires a tight regulation of pro- and anti-inflammatory mechanisms, and that the latter should be activated at the same time or soon after the onset of the pro-inflammatory response. This part of the study may represent a first step in the identification of host genes associated with resistance against S. suis. One of the most important achievements of the mouse model of infection described in this project is the development of distinct clinical signs of neurological disease in CD1 mice from 4 days p.i. Indeed, in CD1 mice that survived sepsis due to S. suis infection, clinical signs of neurological disease and vestibular syndrome, which are quite similar to those observed in clinical cases of S. suis meningitis in both pigs and humans, were observed. Studies of the brains of infected CD1 mice using in situ hybridization combined with immunocytochemistry, demonstrated that the CNS inflammatory response began with a significant increase in the transcription of Toll-like receptor (TLR)2 and CD14 initially in the brain microvasculature and choroid plexuses, suggesting that S. suis may use these structures as portals of entry to the brain. There also was activation of NF-ÎșB (as indicated by transcriptional activation of IÎșBα as a reporter system) and TNF-α, IL-1ÎČ and MCP-1, mainly in cells identified as microglia and to a lesser extent in astrocytes. These signals reached different brain structures, mainly the brain cortex, corpus callosum, hippocampus, choroid plexuses, thalamus, hypothalamus and meninges. All of these pro-inflammatory events were associated with extensive areas of inflammation and necrosis, severe demyelination and presence of antigens of S. suis inside microglia. In vitro studies were conducted in order to better understand the interactions of S. suis and microglia. For this, mouse microglia were infected with a virulent wild type (WT) strain of S. suis. Two isogenic mutants deficient in capsule (CPS) or hemolysin production (suilysin, SLY) respectively, were also included for comparative purposes. The CPS was important for S. suis resistance to phagocytosis, and it also modulated the inflammatory response by hiding pro-inflammatory components from the bacterial cell wall. On the other hand, the absence of SLY, a potential cytotoxic factor, did not have a major impact on S. suis interactions with microglia. Studies with microglia helped to confirm previous findings in vivo in mice, as the WT S. suis strain induced the up-regulation of TLR2 and the production of several pro-inflammatory mediators, including TNF-α and MCP-1. As observed in mice, S. suis induced NF-kB translocation, which was more rapid for cells stimulated with the CPS-deficient mutant, suggesting that bacterial cell wall components are potent inducers of NF-kB. Moreover, WT S. suis promoted phosphotyrosine, PKC and different mitogen-activated protein kinase (MAPK) events. However, microglia infected with the CPS-deficient mutant showed overall stronger and more sustained phosphorylation profiles. Finally, the CPS also modulated S. suis-induced inducible nitrogen oxide synthase (iNOS) expression and further nitric oxide production in microglia, which could be related to neurotoxicity and vasodilatation in vivo. We are confident that our results may help to more fully understand the mechanisms underlying S. suis induction of inflammation, leading to the design of more efficient anti-inflammatory strategies for sepsis and meningitis. Finally, we believe this experimental model of infection in mice could also be useful for studying the pathogenesis of infections of the CNS, due to other bacteria

    Mutations in the Gene Encoding the Ancillary Pilin Subunit of the Streptococcus suis srtF Cluster Result in Pili Formed by the Major Subunit Only

    Get PDF
    Pili have been shown to contribute to the virulence of different Gram-positive pathogenic species. Among other critical steps of bacterial pathogenesis, these structures participate in adherence to host cells, colonization and systemic virulence. Recently, the presence of at least four discrete gene clusters encoding putative pili has been revealed in the major swine pathogen and emerging zoonotic agent Streptococcus suis. However, pili production by this species has not yet been demonstrated. In this study, we investigated the functionality of one of these pili clusters, known as the srtF pilus cluster, by the construction of mutant strains for each of the four genes of the cluster as well as by the generation of antibodies against the putative pilin subunits. Results revealed that the S. suis serotype 2 strain P1/7, as well as several other highly virulent invasive S. suis serotype 2 isolates express pili from this cluster. However, in most cases tested, and as a result of nonsense mutations at the 5â€Č end of the gene encoding the minor pilin subunit (a putative adhesin), pili were formed by the major pilin subunit only. We then evaluated the role these pili play in S. suis virulence. Abolishment of the expression of srtF cluster-encoded pili did not result in impaired interactions of S. suis with porcine brain microvascular endothelial cells. Furthermore, non-piliated mutants were as virulent as the wild type strain when evaluated in a murine model of S. suis sepsis. Our results show that srtF cluster-encoded, S. suis pili are atypical compared to other Gram-positive pili. In addition, since the highly virulent strains under investigation are unlikely to produce other pili, our results suggest that pili might be dispensable for critical steps of the S. suis pathogenesis of infection

    Comparison of the Susceptibilities of C57BL/6 and A/J Mouse Strains to Streptococcus suis Serotype 2 Infection▿

    No full text
    Streptococcus suis is an important swine and human pathogen. Assessment of susceptibility to S. suis using animal models has been limited to monitoring mortality rates. We recently developed a hematogenous model of S. suis infection in adult CD1 outbred mice to study the in vivo development of an early septic shock-like syndrome that leads to death and a late phase that clearly induces central nervous system damage, including meningitis. In the present study, we compared the severities of septic shock-like syndrome caused by S. suis between adult C57BL/6J (B6) and A/J inbred mice. Clinical parameters, proinflammatory mediators, and bacterial clearance were measured to dissect potential immune factors associated with genetic susceptibility to S. suis infection. Results showed that A/J mice were significantly more susceptible than B6 mice to S. suis infection, especially during the acute septic phase of infection (100% of A/J and 16% of B6 mice died before 24 h postinfection). The greater susceptibility of A/J mice was associated with an exaggerated inflammatory response, as indicated by their higher production of tumor necrosis factor alpha, interleukin-12p40/p70 (IL-12p40/p70), gamma interferon, and IL-1ÎČ, but not with different bacterial loads in the blood. In addition, IL-10 was shown to be responsible, at least in part, for the higher survival in B6 mice. Our findings demonstrate that A/J mice are very susceptible to S. suis infection and provide evidence that the balance between pro- and anti-inflammatory mediators is crucial for host survival during the septic phase

    Streptococcus suis

    No full text
    corecore