2,121 research outputs found

    Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities

    Full text link
    We investigate the conditions yielding plasmon-exciton strong coupling at the single emitter level in the gap between two metal nanoparticles. A quasi-analytical transformation optics approach is developed that makes possible a thorough exploration of this hybrid system incorporating the full richness of its plasmonic spectrum. This allows us to reveal that by placing the emitter away from the cavity center, its coupling to multipolar dark modes of both even and odd parity increases remarkably. This way, reversible dynamics in the population of the quantum emitter takes place in feasible implementations of this archetypal nanocavity.Comment: 5 pages, 4 figure

    Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass

    Get PDF
    Metallic nanowires (NW) coated with a high permittivity dielectric are proposed as means to strongly reduce the light scattering of the conducting NW, rendering them transparent at infrared wavelengths of interest in telecommunications. Based on a simple, universal law derived from electrostatics arguments, we find appropriate parameters to reduce the scattering efficiency of hybrid metal-dielectric NW by up to three orders of magnitude as compared with the scattering efficiency of the homogeneous metallic NW. We show that metal@dielectric structures are much more robust against fabrication imperfections than analogous dielectric@metal ones. The bandwidth of the transparent region entirely covers the near IR telecommunications range. Although this effect is optimum at normal incidence and for a given polarization, rigorous theoretical and numerical calculations reveal that transparency is robust against changes in polarization and angle of incidence, and also holds for relatively dense periodic or random arrangements. A wealth of applications based on metal-NWs may benefit from such invisibility

    Determination of hydroclimatically homogeneous areas. A technical proposal

    Full text link
    [EN] Different hydroclimatology researchers apply eigenvectors-based techniques to compress large volumes of information while preserving the invariant structure of the original data. This research developed a methodology applying one of these techniques, Principal Component Analysis, on the elements of variability in hydroclimatic time series, and then to identify clusters with the “k-means” method. The result is a regionalized map by variable. Finally, these maps are intersected, obtaining areas with a homogeneous hydroclimatic structure, because the variables have similarity in their variance structure. In the case study, 8 variables were evaluated for Colombia (9268 time series), obtaining as a result 26 hydroclimatic regions. Obtaining hydroclimatically homogeneous regions offers the possibility of generating, among others, projects for climate change adaptation in a localized way to provide quasi-specific solutions that maximize results.[ES] Diferentes investigadores en hidroclimatología aplican técnicas basadas en autovectores para comprimir grandes volúmenes de información mientras conservan la estructura invariante de los datos originales. La presente investigación desarrolló una metodología que aplica una de estas técnicas, Análisis de Componentes Principales, a los elementos de variabilidad en series de tiempo hidroclimáticas y luego se identifican grupos o clústers mediante el método “k-means”. El resultado es un mapa regionalizado por variable. Finalmente se hace la intersección de estos mapas y obteniéndose áreas que presentan una estructura hidroclimática homogénea debido que las variables comparten su estructura de varianza. En el caso de estudio se evaluaron 8 variables para Colombia (9268 series de tiempo), obteniendo como resultado 26 regiones hidroclimáticas. Obtener regiones hidroclimáticamente homogéneas brinda la posibilidad de generar, entre otros, proyectos de adaptación al cambio climático de forma localizada con el fin de dar soluciones cuasi particulares que maximicen los resultados. A la Gobernación del Magdalena y a COLCIENCIAS por seleccionar al ing. David De León Pérez como beneficiario de una beca-crédito condonable mediante la convocatoria 672 de COLCIENCIAS “Formación de capital humano de alto nivel para el departamento del Magdalena 2014” (Maestría Nacional). Al equipo del Taller S-Multistor que brindó su apoyo en medio de la Cooperación Programática entre la Dirección General de Cooperación Internacional (DGIS) del Ministerio de Asuntos Exteriores de los Países Bajos e IHE Delft, a través de la participación de la Facultad de Estudios Ambientales y Rurales de la Pontificia Universidad Javeriana (Bogotá, Colombia).De León Pérez, D.; Domínguez, E. (2021). Determinación de áreas hidroclimáticamente homogéneas. Una propuesta técnica. Ingeniería del agua. 25(2):97-114. https://doi.org/10.4995/ia.2021.14659OJS97114252Abadi, A.M., Rowe, C.M., Andrade, M. 2019. Climate regionalization in Bolivia: A combination of non-hierarchical and consensus clustering analyses based on precipitation and temperature. International Journal of Climatology, 40(10), 4408-4421. https://doi.org/10.1002/joc.6464Aliaga, V.S., Ferrelli, F., Piccolo, M.C. 2017. Regionalization of climate over the Argentine Pampas. International Journal of Climatology, 37(S1), 1237-1247. https://doi.org/10.1002/joc.5079Arthur, D., Vassilvitskii, S. 2007. k-means++: The advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, pp. 1027-1035. https://dl.acm.org/doi/10.5555/1283383.1283494Badr, H., Zaitchik, B.F., Dezfuli, A.K. 2015. A tool for hierarchical climate regionalization. Earth Science Informatics, 8, 945-958. https://doi.org/10.1007/s12145-015-0221-7Bradley, J. 1968. Distribution-Free Statistical Tests. Prentice-Hall, Englewood Cliffs, NJ, 283-310.Coulibaly, P., Evora, N.D. 2005. Comparison of neural network methods for infilling missing daily weather records. Journal of Hydrogy, 341 (1-2), 27-41. https://doi.org/10.1016/j.jhydrol.2007.04.020De Gooijer, J. 2017. Elements of Nonlinear Time Series Analysis and Forecasting. Springer Series in Statistics. Springer International Publishing. https://doi.org/10.1007/978-3-319-43252-6De León Pérez, D. 2017. Análisis de sincronización espacio-temporal de señales océano-atmosféricas y variables hidroclimatológicas de Colombia. Tesis de maestría, Facultad de Ingeniería, Pontificia Universidad Javeriana. http://hdl.handle.net/10554/35731.Dingman, S.L. 2015. Physical Hydrology: Third Edition. Waveland Press. https://www.waveland.com/browse.php?t=382Domínguez, E., Angarita, H., Rivera, H. 2010. Viabilidad para pronósticos hidrológicos de niveles diarios, semanales y decadales en Colombia. Ingeniería e investigación, 30(2), 178-187. Disponible en http://www.scielo.org.co/pdf/iei/v30n2/v30n2a18.pdf. Último acceso: marzo de 2021.Dubois, P., Hinsen, K., Hugunin, J. 1996. Numerical python. Computers in Physics, 10(3), 262. https://doi.org/10.1063/1.4822400Environmental Systems Research Institute (ESRI). 2015. Arcgis for desktop. http://www.esri.comFedorov, V. 2015. Spatial and temporal variations in solar climate of earth in the present epoch. Izvestiya, Atmospheric and Oceanic Physics, 51(8), 779-791. https://doi.org/10.1134/S0001433815080034Gómez Lende, S. 2011. Región y regionalización: Su teoría y su método. El nuevo orden espacial del territorio argentino. Universidad del Bío-Bío, 26, 83-122. http://www.ubiobio.cl/miweb/webfile/media/222/Tiempo/2011/%2327.05.pdfGovindaraju, R.S., 2000. Artificial neural networks in hydrology. ii: Hydrologic applications. Journal of Hydrologic Engineering, 5(2), 124-137. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)Grubbs, F.E. 1950. Sample criteria for testing outlying observations. Annals of Mathematical Statistics, 21(1), 27-58. https://doi.org/10.1214/aoms/1177729885Haan, C. 1977. Statistical Methods in Hydrology. Iowa State University Press. http://hdl.handle.net/1969.3/24532Hannachi, A. 2004. A primer for eof analysis of climate data. Department of Meteorology, University of Reading, 1-33.HIMAT. 1978. Resolución 00337, por el cual se adopta un sistema de codificación para las estaciones hidrometeorológicas. Instituto Colombiano de Hidrología, Meteorología y Adecuación de Tierras, Bogotá, Colombia.Hotellin, H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417-441. https://doi.org/10.1037/h0071325Hunter, J.D. 2007. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 9(3), 90-95. https://doi.org/10.1109/MCSE.2007.55IDEAM. 2001. El medio ambiente en Colombia, 2nd Edición. Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM, Bogotá D.C., Colombia. http://www.ideam.gov.coIPCC, Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. 2013. Annex III: Glossary. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, book section AIII, p. 1447-1466. https://www.climatechange2013.orgJones, E., Oliphant, T., Peterson, P., et al. 2001. SciPy: Open source scientific tools for Python. http://www.scipy.org/Leland, C., Pederson, N., Hessl, A.m Nachin, D, Davi, N., D'Arrigo, R., Jacoby, G., 2013. Climate regionalization in Bolivia: A combination of non-hierarchical and consensus clustering analyses based on precipitation and temperature. Dendrochronologia, 31(3), 205-215. https://doi.org/10.1016/j.dendro.2012.11.003León, G., Zea, J., Eslava, J. 2000. Circulación general del trópico y la zona de confluencia intertropical en Colombia. Meteorología Colombiana, 1, 31-38. http://168.176.14.11/fileadmin/content/geociencias/revista_meteorologia_colombiana/numero01/01_05.pdfLeys, C., Ley, C., Klein, O., Bernard, P., Licata, L. 2013. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology, 49(4), 764-766. https://doi.org/10.1016/j.jesp.2013.03.013Lorenz, E.N. 1970. Climatic change as a mathematical problem. Journal of Applied Meteorology, 9(3), 325-329. https://doi.org/10.1175/1520-0450(1970)009%3C0325:CCAAMP%3E2.0.CO;2MADS. 2012. Decreto 1640, por medio del cual se reglamenta los instrumentos para la planificación ordenación y manejo de las cuencas hidrográficas y acuíferos, y se dictan otras disposiciones. Ministerio de Ambiente y Desarrollo Sostenible, Bogotá, Colombia. Disponible en https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=49987Malcolm, G.A., McDonnell, J.J. 2005. Encyclopedia of hydrological science. John Wiley & Sons Ltd. https://doi.org/10.1002/0470848944McKinney, W. 2010. Pandas: a foundational python library for data analysis and statistics. Python for High Performance and Scientific Computing, 14(9), 1-9.Mesa, O.J., Poveda, G., Carvajal, L. 1997. Introducción al clima de Colombia. Universidad Nacional de Colombia.Montgomery, D., Jennings, C., Kulahci, M. 2015. Introduction to Time Series Analysis and Forecasting. Wiley Series in Probability and Statistics. Wiley. https://onlinelibrary.wiley.com/doi/abs/10.1111/jtsa.12203Montoya Gaviria, G. d. J. 2008. Lecciones de meteorología dinámica y modelamiento atmosférico. Universidad Nacional de Colombia. Facultad de Ciencias. http://ciencias.bogota.unal.edu.co/fileadmin/Facultad_de_Ciencias/Publicaciones/Archivos_Libros/Libros_Geociencias/Lecciones_de_Meteorologia_dinamica/Metereologia.pdfPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duch- esnay, E. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, Microtome Publishing. hal-00650905v1. Disponible en https://hal.inria.fr/hal-00650905v1. Último acceso: marzo de 2021.Poveda, G. 2004. La Hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias, 28(107), 201-222. Disponible en https://www.accefyn.com/revista/Vol_28/107/201-222.pdf.Último acceso: marzo de 2021.Poveda, G., Jaramillo, A., Mantilla, R. 2001. Asociación entre el fenómeno el niño y las anomalías de humedad del suelo y del índice "ndvi" en colombia. In: IX Congreso Latinoamericano e Ibérico de Meteorología y VIII Congreso Argentino de Meteorología. p. 8.http://www.accefyn.com/revista/Vol_28/107/201-222.pdfPoveda, G., Mesa, O.J. 1997. Feedbacks between hydrological processes in tropical south america and large-scale ocean-atmospheric phenomena. Journal of Climate, 10(10), 2690-2702. https://doi.org/10.1175/1520-0442(1997)010%3C2690:FBHPIT%3E2.0.CO;2Python Core Team. 2017. Python: A dynamic, open source programming language. https://www.python.org/.R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Rossum, G. 1995. Python reference manual. Tech. rep., CWI (Centre for Mathematics and Computer Science), Amsterdam, The Netherlands, The Netherlands.Samarasinghe, S. 2016. Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. CRC Press. 25, 33Velasco, A. 2016. Integración del concepto de variabilidad hidroclimática en pronósticos hidrológicos de largo plazo de resolución mensual en Colombia. Tesis de maestría, Facultad de Ingeniería, Pontificia Universidad Javeriana. http://hdl.handle.net/10554/19628Ward, J.H., Marion, JR. 1963. Application of an Hierarchical Grouping Procedure to a Problem of Grouping Profiles. Educational and Psychological Measurement, 23(1), 69-81. https://doi.org/10.1177/001316446302300107White, D., Richman, M., Yarnal, B. 1991. Climate regionalization and rotation of principal components. International Journal of Climatology, 11(1), 1-25. http://doi.org/10.1002/joc.3370110102WMO. 1994. Guía de prácticas hidrológicas: adquisición y proceso de datos, análisis, predicción y otras aplicaciones. Organización Meteorológica Mundial. http://www.whycos.org/hwrp/guide/index_es.ph

    Herramientas para la detección y seguimiento de personas a partir de cámaras de seguridad

    Get PDF
    La inseguridad es un problema que afecta en mayor o menor medida a todas las ciudades del mundo. Las ciudades más informatizadas hacen uso de la video-vigilancia para combatirla, montando en muchos de los casos centros de monitoreo con cientos de cámaras. En su mayoría, estos centros cuentan con grupos de personas para realizar la tarea de observación, sin embargo, la velocidad de cómputo actual nos da la posibilidad de automatizar muchas de sus tareas diarias. En este trabajo, se presenta una plataforma de análisis de video que se está desarrollando en la UNCPBA para facilitar el seguimiento de una persona a través de diferentes cámaras, utilizando técnicas de proyección que convierten los puntos detectados desde las diferentes cámaras a un único espacio georeferenciado. Se presenta una discusión de los algoritmos utilizados para el seguimiento, algunos problemas propios que se suceden en este tipo de sistemas y los resultados preliminares obtenidos.XIV Workshop Computación Gráfica, Imágenes y Visualización (WCGIV)

    Exact-Diagonalization Studies of Inelastic Light Scattering in Self-Assembled Quantum Dots

    Full text link
    We report exact diagonalization studies of inelastic light scattering in few-electron quantum dots under the strong confinement regime characteristic of self-assembled dots. We apply the orthodox (second-order) theory for scattering due to electronic excitations, leaving for the future the consideration of higher-order effects in the formalism (phonons, for example), which seem relevant in the theoretical description of available experiments. Our numerical results stress the dominance of monopole peaks in Raman spectra and the breakdown of selection rules in open-shell dots. The dependence of these spectra on the number of electrons in the dot and the incident photon energy is explicitly shown. Qualitative comparisons are made with recent experimental results.Comment: 11 pages, 11 figure

    Putative antimicrobial peptides of the posterior salivary glands from the cephalopod octopus vulgaris revealed by exploring a composite protein database

    Get PDF
    Cephalopods, successful predators, can use a mixture of substances to subdue their prey, becoming interesting sources of bioactive compounds. In addition to neurotoxins and enzymes, the presence of antimicrobial compounds has been reported. Recently, the transcriptome and the whole proteome of the Octopus vulgaris salivary apparatus were released, but the role of some compounds—e.g., histones, antimicrobial peptides (AMPs), and toxins—remains unclear. Herein, we profiled the proteome of the posterior salivary glands (PSGs) of O. vulgaris using two sample preparation protocols combined with a shotgun-proteomics approach. Protein identification was performed against a composite database comprising data from the UniProtKB, all transcriptomes available from the cephalopods’ PSGs, and a comprehensive non-redundant AMPs database. Out of the 10,075 proteins clustered in 1868 protein groups, 90 clusters corresponded to venom protein toxin families. Additionally, we detected putative AMPs clustered with histones previously found as abundant proteins in the saliva of O. vulgaris. Some of these histones, such as H2A and H2B, are involved in systemic inflammatory responses and their antimicrobial effects have been demonstrated. These results not only confirm the production of enzymes and toxins by the O. vulgaris PSGs but also suggest their involvement in the first line of defense against microbes.AA was partially supported by the Strategic Funding UIDB/04423/2020 and UIDP/04423/2020 through national funds provided by FCT and the European Regional Development Fund (ERDF) in the framework of the program PT2020, by the European Structural and Investment Funds (ESIF) through the Competitiveness and Internationalization Operational Progra-COMPETE 2020 and by National Funds through the FCT under the project PTDC/CTA-AMB/31774/2017 (POCI-01-0145-FEDER/031774/2017)
    corecore