71 research outputs found
Data Acquisition System for the Characterization of Biomechanical and Ergonomic Thresholds in Driving Vehicles
[EN] Directive (EU) 2015/653 on driving licenses has involved the modification of different codes that must appear on driver's licenses. The definition of specific codes (20.07 and 40.01) compels measurement of the braking and steering forces. Performing practical tests to assess the driving fitness of special drivers will help to determine the maximum force that a driver can apply on primary controls when driving. From that point, definition of car control adaptations required to supply their functional deficiencies can be stated. This article describes a data acquisition system designed and developed for obtaining data from experimental tests based on the execution of habitual driving manoeuvres (braking, lane change and roundabouts). The data gathered will allow for definition of the thresholds of biomechanical values (forces on the steering wheel and brake pedal) and ergonomic values (driver's upper extremity mobility ranges) necessary for driving motor vehicles. The results have shown that application in real driving tests of the data acquisition system designed provides valid and suitable results for the case studied. Therefore, it will contribute to substantially improving the assessment procedure for drivers in general and for disabled people in particular when obtaining or renewing their driving licenses.This research was funded by Generalitat Valenciana (Spain) under grant APOSTD/2017/055 and by the Universitat Politecnica de Valencia (UPV) (Spain) under the project Characterization of biomechanical and ergonomic thresholds in driving motor vehicles applicable to driver evaluation (Ref. 20190480). This research has been approved by the UPV Ethical Committee at a session celebrated on 18 June 2019 (ref. P5_18_06_19).Dols Ruiz, JF.; Girbés, V.; Luna, Á.; Catalán, J. (2020). Data Acquisition System for the Characterization of Biomechanical and Ergonomic Thresholds in Driving Vehicles. Sustainability. 12(17):1-16. https://doi.org/10.3390/su12177013S1161217Disability Statisticshttps://ec.europa.eu/eurostat/statistics-explained/index.php?title=Disability_statistics_introducedFlash Eurobarometer 345; Accessibility; Report; Directorate-General Justice and Coordinated by Directorate-General for Communication; Brusselshttps://ec.europa.eu/commfrontoffice/publicopinion/flash/fl_345_en.pdfGirbés, V., Hernández, D., Armesto, L., Dols, J., & Sala, A. (2019). Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles. Sensors, 19(16), 3515. doi:10.3390/s19163515Dols, J., & Mirabet, E. (2008). Análisis experimental de los rangos de movilidad articular y fuerza muscular requerida para la conducción de vehículos automóviles. Securitas Vialis, 1(1), 17-26. doi:10.1007/s12615-008-9003-zHorberry, T., & Inwood, C. (2010). Defining criteria for the functional assessment of driving. Applied Ergonomics, 41(6), 796-805. doi:10.1016/j.apergo.2010.01.006Dols, J. F., Molina, J., Camacho, F. J., Marín-Morales, J., Pérez-Zuriaga, A. M., & Garcia, A. (2016). Design and Development of Driving Simulator Scenarios for Road Validation Studies. Transportation Research Procedia, 18, 289-296. doi:10.1016/j.trpro.2016.12.03
On the Assessment of Fitness to Drive: Steering and Brake Operative Forces
The Directive (EU) 2015/653 aimed at facilitating that the maximum force that any disabled driver could make on the vehicle's primary controls could be adjusted to their needs. The technical adjustment in the vehicle's design requires a measurement of the operational forces applied by the driver on the steering and brake controls, in order to determine its functional capacity during the execution of driving manoeuvres. The objective of this paper is to define the steering and braking operative forces used for driving current-market M1 motor vehicles for the fitness to drive assessment of drivers with physical disabilities. A total of 200 trials were performed with 17 different vehicles and 26 drivers. The results obtained help to define a new threshold's criteria for operative forces onto the steering and braking systems for adapting motor vehicles to disabled drivers. The main contribution of this paper consist on a new technical recommendations about the use of code 20.07 -braking- and 40.01 -steering- to be used in the fitness to drive assessment of driver with disabilities according to Directive (EU) 2015/653 requirements
Accesibilidad, seguridad y diseño para todos en el transporte
El documento comienza con la exposición cuantitativa de la población de personas con movilidad reducida en España y la definición de los términos de accesibilidad, seguridad y diseño universal en relación con el transporte. A continuación, se realiza una aproximación del estado actual de la accesibilidad en el transporte y se presenta un detallado informe en el que se abordan los aspectos relativos a la seguridad de las personas con movilidad reducida en los medios de transporte terrestres. Se analizan así los antecedentes, informes y estudios previos y la normativa relacionada con este ámbito. Por último, se exponen las características de los medios accesibles y la seguridad en los vehículos, así como diversas iniciativas en favor de la accesibilidad, la seguridad y el diseño para todos en el transporte
The Trainer Project: A New Simulator-Based Driver Training Curriculum
The purpose of the EU funded TRAINER project is to develop a new cost-effective Pan-European driver training curriculum, includingcomputer-based interactive multimedia and simulator technology. Thecurriculum will pay significant attention to higher order skills including riskawareness. For this purpose a number of scenarios were developed thataddresses the most important needs of learner drivers. These scenarios are usedin a PC-based interactive multimedia tool as well as in a driving simulator. Theinteractive multimedia tool allows training and assessment of higher cognitiveskills (i.e., strategic and manoeuvring tasks), familiarisation of novice driverswith the basic principles of driving, and contributing to a better understandingof (potential) risks. A low cost stationary driving simulator is used for acquiringskills in vehicle handling and negotiating common traffic situations (i.e.,manoeuvring and control tasks). In addition, a mean cost semi-dynamic drivingsimulator is developed for supporting the needs of specific driver cohorts, suchas novice drivers with enhanced knowledge problems and drivers in high-riskgroups. Application of such an advanced computer-based curriculum alsoimplies development of criteria to allow driving instructors to determinetraining progress. These criteria are based on a database of normative driverbehaviour. This paper mainly focuses on the description of the technical (softandhardware) requirements for both low-cost and mean-cost simulators
Asynchronous sensor fusion of GPS, IMU and CAN-based odometry for heavy-duty vehicles
In heavy-duty vehicles, multiple signals are available to estimate the vehicle's kinematics, such as Inertial Measurement Unit (IMU), Global Positioning System (GPS) and linear and angular speed readings from wheel tachometers on the internal Controller Area Network (CAN). These signals have different noise variance, bandwidth and sampling rate (being the latter, possibly, irregular). In this paper we present a non-linear sensor fusion algorithm allowing asynchronous sampling and non-causal smoothing. It is applied to achieve accuracy improvements when incorporating odometry measurements from CAN bus to standard GPS+IMU kinematic estimation, as well as the robustness against missing data. Our results show that this asynchronous multi-sensor (GPS+IMU+CAN-based odometry) fusion is advantageous in low-speed manoeuvres, improving accuracy and robustness to missing data, thanks to non-causal filtering. The proposed algorithm is based on Extended Kalman Filter and Smoother, with exponential discretization of continuous-time stochastic differential equations, in order to process measurements at arbitrary time instants; it can provide data to subsequent processing steps at arbitrary time instants, not necessarily coincident with the original measurement ones. Given the extra information available in the smoothing case, its estimation performance is less sensitive to the noise-variance parameter setting, compared to causal filtering. Working Matlab code is provided at the end of this work
Drive Force and Longitudinal Dynamics Estimation in Heavy-Duty Vehicles
Modelling the dynamic behaviour of heavy vehicles, such as buses or trucks, can be very useful for driving simulation and training, autonomous driving, crash analysis, etc. However, dynamic modelling of a vehicle is a difficult task because there are many subsystems and signals that affect its behaviour. In addition, it might be hard to combine data because available signals come at different rates, or even some samples might be missed due to disturbances or communication issues. In this paper, we propose a non-invasive data acquisition hardware/software setup to carry out several experiments with an urban bus, in order to collect data from one of the internal communication networks and other embedded systems. Subsequently, non-conventional sampling data fusion using a Kalman filter has been implemented to fuse data gathered from different sources, connected through a wireless network (the vehicle's internal CAN bus messages, IMU, GPS, and other sensors placed in pedals). Our results show that the proposed combination of experimental data gathering and multi-rate filtering algorithm allows useful signal estimation for vehicle identification and modelling, even when data samples are missing
Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction
Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox®, rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation requirements and the simplicity of the bioassay open the possibility of in-situ water toxicity assessment with a fast and low-cost protocolPostprint (author's final draft
Exome sequencing identifies novel AD-associated genes
The genetic component of Alzheimer’s disease (AD) has been mainly assessed using Genome Wide Association Studies (GWAS), which do not capture the risk contributed by rare variants. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals —16,036 AD cases and 16,522 controls— in a two-stage analysis. Next to known genes TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Next to these genes, the rare variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential driver genes in AD-GWAS loci. Rare damaging variants in these genes, and in particular loss-of-function variants, have a large effect on AD-risk, and they are enriched in early onset AD cases. The newly identified AD-associated genes provide additional evidence for a major role for APP-processing, Aβ-aggregation, lipid metabolism and microglial function in AD
Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers
Altres ajuts: European Alzheimer DNA BioBank, EADB; EU Joint Programme, Neurodegenerative Disease Research (JPND); Neurodegeneration research program of Amsterdam Neuroscience; Stichting Alzheimer Nederland; Stichting VUmc fonds; Stichting Dioraphte; JPco-fuND FP-829-029 (ZonMW projectnumber 733051061); Dutch Federation of University Medical Centers; Dutch Government (from 2007-2011); JPND EADB grant (German Federal Ministry of Education and Research (BMBF) grant: 01ED1619A); German Research Foundation (DFG RA 1971/6-1, RA1971/7-1, RA 1971/8-1); Grifols SA; Fundación bancaria 'La Caixa'; Fundació ACE; CIBERNED; Fondo Europeo de Desarrollo Regional (FEDER-'Una manera de hacer Europa'); NIH (P30AG066444, P01AG003991); Alzheimer Research Foundation (SAO-FRA), The Research Foundation Flanders (FWO), and the University of Antwerp Research Fund. FK is supported by a BOF DOCPRO fellowship of the University of Antwerp Research Fund; Siemens Healthineers; Valdecilla Biobank (PT17/0015/0019); Academy of Finland (338182); German Center for Neurodegenerative Diseases (DZNE); German Federal Ministry of Education and Research (BMBF 01G10102, 01GI0420, 01GI0422, 01GI0423, 01GI0429, 01GI0431, 01GI0433, 04GI0434, 01GI0711); ZonMW (#73305095007); Health~Holland, Topsector Life Sciences & Health (PPP-allowance #LSHM20106); Hersenstichting; Edwin Bouw Fonds; Gieskes-Strijbisfonds; NWO Gravitation program BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (NWO: 024.004.012); Swedish Alzheimer Foundation (AF-939988, AF-930582, AF-646061, AF-741361); Dementia Foundation (2020-04-13, 2021-04-17); Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALF 716681); Swedish Research Council (11267, 825-2012-5041, 2013-8717, 2015-02830, 2017-00639, 2019-01096); Swedish Research Council for Health, Working Life and Welfare (2001-2646, 2001-2835, 2001-2849, 2003-0234, 2004-0150, 2005-0762, 2006-0020, 2008-1229, 2008-1210, 2012-1138, 2004-0145, 2006-0596, 2008-1111, 2010-0870, 2013-1202, 2013-2300, 2013-2496); Swedish Brain Power, Hjärnfonden, Sweden (FO2016-0214, FO2018-0214, FO2019-0163); Alzheimer's Association Zenith Award (ZEN-01-3151); Alzheimer's Association Stephanie B. Overstreet Scholars (IIRG-00-2159); Alzheimer's Association (IIRG-03-6168, IIRG-09-131338); Bank of Sweden Tercentenary Foundation; Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-81392, ALFGBG-771071); Swedish Alzheimer Foundation (AF-842471, AF-737641, AF-939825); Swedish Research Council (2019-02075); Swedish Research Council (2016-01590); BRAINSCAPES: A Roadmap from Neurogenetics to Neurobiology (024.004.012); Swedish Research Council (2018-02532); Swedish State Support for Clinical Research (ALFGBG-720931); Alzheimer Drug Discovery Foundation (ADDF), USA (201809-2016862); UK Dementia Research Institute at UCL; Swedish Research Council (#2017-00915); Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615); Swedish Alzheimer Foundation (#AF-742881); Hjärnfonden, Sweden (#FO2017-0243); Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986); National Institute of Health (NIH), USA, (#1R01AG068398-01); Alzheimer's Association 2021 Zenith Award (ZEN-21-848495); National Institutes of Health (R01AG044546, R01AG064877, RF1AG053303, R01AG058501, U01AG058922, RF1AG058501, R01AG064614); Chuck Zuckerberg Initiative (CZI).Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n = 8074; replication n = 5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume
Cumulative Genetic Score and C9orf72 Repeat Status Independently Contribute to Amyotrophic Lateral Sclerosis Risk in 2 Case-Control Studies
[Background and Objectives] Most patients with amyotrophic lateral sclerosis (ALS) lack a monogenic mutation. This study evaluates ALS cumulative genetic risk in an independent Michigan and Spanish replication cohort using polygenic scores.[Methods] Participant samples from University of Michigan were genotyped and assayed for the chromosome 9 open reading frame 72 hexanucleotide expansion. Final cohort size was 219 ALS and 223 healthy controls after genotyping and participant filtering. Polygenic scores excluding the C9 region were generated using an independent ALS genome-wide association study (20,806 cases, 59,804 controls). Adjusted logistic regression and receiver operating characteristic curves evaluated the association and classification between polygenic scores and ALS status, respectively. Population attributable fractions and pathway analyses were conducted. An independent Spanish study sample (548 cases, 2,756 controls) was used for replication.[Results] Polygenic scores constructed from 275 single-nucleotide variation (SNV) had the best model fit in the Michigan cohort. An SD increase in ALS polygenic score associated with 1.28 (95% CI 1.04–1.57) times higher odds of ALS with area under the curve of 0.663 vs a model without the ALS polygenic score (p value = 1 × 10−6). The population attributable fraction of the highest 20th percentile of ALS polygenic scores, relative to the lowest 80th percentile, was 4.1% of ALS cases. Genes annotated to this polygenic score enriched for important ALS pathomechanisms. Meta-analysis with the Spanish study, using a harmonized 132 single nucleotide variation polygenic score, yielded similar logistic regression findings (odds ratio: 1.13, 95% CI 1.04–1.23).[Discussion] ALS polygenic scores can account for cumulative genetic risk in populations and reflect disease-relevant pathways. If further validated, this polygenic score will inform future ALS risk models.National ALS Registry/CDC/ATSDR (1R01TS000289); National ALS Registry/CDC/ATSDR CDCP-DHHS-US (CDC/ATSDR 200-2013-56856); NIEHS K23ES027221; NIEHS R01ES030049; NINDS R01NS127188, ALS Association (20-IIA-532), the Dr. Randall W. Whitcomb Fund for ALS Genetics, the Peter R. Clark Fund for ALS Research, the Scott L. Pranger ALS Clinic Fund, and the NeuroNetwork for Emerging Therapies at the University of Michigan. This work was supported in part by the Intramural Research Program of the NIH, National Institute on Aging (Z01-AG000949-02). Project “ALS Genetic study in Madrid Autonomous Community” funded by “ESTRATEGIAS FRENTE A ENFERMEDADES NEURODEGENERATIVAS” from Spanish Ministry of Health.Peer reviewe
- …