162 research outputs found

    Breast cancer : psycho-oncology interventions at different states of the cancer treatment

    Get PDF

    Hardy-Carleman Type Inequalities for Dirac Operators

    Full text link
    General Hardy-Carleman type inequalities for Dirac operators are proved. New inequalities are derived involving particular traditionally used weight functions. In particular, a version of the Agmon inequality and Treve type inequalities are established. The case of a Dirac particle in a (potential) magnetic field is also considered. The methods used are direct and based on quadratic form techniques

    A study of blow-ups in the Keller-Segel model of chemotaxis

    Full text link
    We study the Keller-Segel model of chemotaxis and develop a composite particle-grid numerical method with adaptive time stepping which allows us to accurately resolve singular solutions. The numerical findings (in two dimensions) are then compared with analytical predictions regarding formation and interaction of singularities obtained via analysis of the stochastic differential equations associated with the Keller-Segel model

    Sums of magnetic eigenvalues are maximal on rotationally symmetric domains

    Full text link
    The sum of the first n energy levels of the planar Laplacian with constant magnetic field of given total flux is shown to be maximal among triangles for the equilateral triangle, under normalization of the ratio (moment of inertia)/(area)^3 on the domain. The result holds for both Dirichlet and Neumann boundary conditions, with an analogue for Robin (or de Gennes) boundary conditions too. The square similarly maximizes the eigenvalue sum among parallelograms, and the disk maximizes among ellipses. More generally, a domain with rotational symmetry will maximize the magnetic eigenvalue sum among all linear images of that domain. These results are new even for the ground state energy (n=1).Comment: 19 pages, 1 figur

    Assessment of needs, health-related quality of life, and satisfaction with care in breast cancer patients to better target supportive care

    Get PDF
    Background This study assessed whether breast cancer (BC) patients express similar levels of needs for equivalent severity of symptoms, functioning difficulties, or degrees of satisfaction with care aspects. BC patients who did (or not) report needs in spite of similar difficulties were identified among their sociodemographic or clinical characteristics. Patients and methods Three hundred and eighty-four (73% response rate) BC patients recruited in ambulatory or surgery hospital services completed the European Organisation for Research and Treatment of Cancer Quality of Life questionnaire (EORTC QLQ)-C30 quality of life [health-related quality of life (HRQOL)], the EORTC IN-PATSAT32 (in-patient) or OUT-PATSAT35 (out-patient) satisfaction with care, and the supportive care needs survey short form 34-item (SCNS-SF34) measures. Results HRQOL or satisfaction with care scale scores explained 41%, 45%, 40% and 22% of variance in, respectively, psychological, physical/daily living needs, information/health system, and care/support needs (P < 0.001). BC patients' education level, having children, hospital service attendance, and anxiety/depression levels significantly predicted differences in psychological needs relative to corresponding difficulties (adjusted R2 = 0.11). Medical history and anxiety/depression levels significantly predicted differences in information/health system needs relative to degrees of satisfaction with doctors, nurses, or radiotherapy technicians and general satisfaction (adjusted R2 = 0.12). Unmet needs were most prevalent in the psychological domains across hospital services. Conclusions Assessment of needs, HRQOL, and satisfaction with care highlights the subgroups of BC patients requiring better supportive care targetin

    Critical dynamics of self-gravitating Langevin particles and bacterial populations

    Full text link
    We study the critical dynamics of the generalized Smoluchowski-Poisson system (for self-gravitating Langevin particles) or generalized Keller-Segel model (for the chemotaxis of bacterial populations). These models [Chavanis & Sire, PRE, 69, 016116 (2004)] are based on generalized stochastic processes leading to the Tsallis statistics. The equilibrium states correspond to polytropic configurations with index nn similar to polytropic stars in astrophysics. At the critical index n3=d/(d2)n_{3}=d/(d-2) (where d2d\ge 2 is the dimension of space), there exists a critical temperature Θc\Theta_{c} (for a given mass) or a critical mass McM_{c} (for a given temperature). For Θ>Θc\Theta>\Theta_{c} or M<McM<M_{c} the system tends to an incomplete polytrope confined by the box (in a bounded domain) or evaporates (in an unbounded domain). For Θ<Θc\Theta<\Theta_{c} or M>McM>M_{c} the system collapses and forms, in a finite time, a Dirac peak containing a finite fraction McM_c of the total mass surrounded by a halo. This study extends the critical dynamics of the ordinary Smoluchowski-Poisson system and Keller-Segel model in d=2d=2 corresponding to isothermal configurations with n3+n_{3}\to +\infty. We also stress the analogy between the limiting mass of white dwarf stars (Chandrasekhar's limit) and the critical mass of bacterial populations in the generalized Keller-Segel model of chemotaxis

    Asymptotic expansions of the solutions of the Cauchy problem for nonlinear parabolic equations

    Full text link
    Let uu be a solution of the Cauchy problem for the nonlinear parabolic equation tu=Δu+F(x,t,u,u)inRN×(0,),u(x,0)=φ(x)inRN, \partial_t u=\Delta u+F(x,t,u,\nabla u) \quad in \quad{\bf R}^N\times(0,\infty), \quad u(x,0)=\varphi(x)\quad in \quad{\bf R}^N, and assume that the solution uu behaves like the Gauss kernel as tt\to\infty. In this paper, under suitable assumptions of the reaction term FF and the initial function φ\varphi, we establish the method of obtaining higher order asymptotic expansions of the solution uu as tt\to\infty. This paper is a generalization of our previous paper, and our arguments are applicable to the large class of nonlinear parabolic equations

    Flat galaxies with dark matter halos - existence and stability

    Full text link
    We consider a model for a flat, disk-like galaxy surrounded by a halo of dark matter, namely a Vlasov-Poisson type system with two particle species, the stars which are restricted to the galactic plane and the dark matter particles. These constituents interact only through the gravitational potential which stars and dark matter create collectively. Using a variational approach we prove the existence of steady state solutions and their nonlinear stability under suitably restricted perturbations.Comment: 39 page

    Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion

    Get PDF
    For a specific choice of the diffusion, the parabolic-elliptic Patlak-Keller-Segel system with non-linear diffusion (also referred to as the quasi-linear Smoluchowski-Poisson equation) exhibits an interesting threshold phenomenon: there is a critical mass Mc>0M_c>0 such that all the solutions with initial data of mass smaller or equal to McM_c exist globally while the solution blows up in finite time for a large class of initial data with mass greater than McM_c. Unlike in space dimension 2, finite mass self-similar blowing-up solutions are shown to exist in space dimension d?3d?3
    corecore