160 research outputs found

    G-Protein coupled receptor signalling in pluripotent stem cell-derived cardiovascular cells: Implications for disease modelling

    Get PDF
    Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling. In this review, we will therefore describe the state of knowledge concerning the regulatory role of GPCRs in both the generation and function of pluripotent stem cell derived-cardiomyocytes, -endothelial, and -vascular smooth muscle cells. We will consider how far the in vitro disease models recapitulate authentic GPCR signaling and provide a useful basis for discovery of disease mechanisms or design of therapeutic strategies

    Differential Expression of the Circadian Clock in Maternal and Embryonic Tissues of Mice

    Get PDF
    BACKGROUND: Molecular feedback loops involving transcription and translation and several key genes are at the core of circadian regulatory cycles affecting cellular pathways and metabolism. These cycles are active in most adult animal cells but little is known about their expression or influence during development. METHODOLOGY/PRINCIPAL FINDINGS: To determine if circadian cycles are active during mammalian development we measured the expression of key circadian genes during embryogenesis in mice using quantitative real-time RT-PCR. All of the genes examined were expressed in whole embryos beginning at the earliest age examined, embryonic day 10. In contrast to adult tissues, circadian variation was absent for all genes at all of the embryonic ages examined in either whole embryos or individual tissues. Using a bioluminescent fusion protein that tracks translation of the circadian gene, per2, we also analyzed protein levels. Similar to mRNA, a protein rhythm was observed in adult tissue but not in embryonic tissues collected in-vivo. In contrast, when tissues were placed in culture for the continuous assay of bioluminescence, rhythms were observed in embryonic (E18) tissues. We found that placing embryonic tissues in culture set the timing (phase) of these rhythms, suggesting the importance of a synchronizing signal for the expression of circadian cycles in developing tissues. CONCLUSIONS/SIGNIFICANCE: These results show that embryonic tissues express key circadian genes and have the capacity to express active circadian regulatory cycles. In vivo, circadian cycles are not expressed in embryonic tissues as they are in adult tissues. Individual cells might express oscillations, but are not synchronized until later in development

    Ageing of enteric neurons: oxidative stress, neurotrophic factors and antioxidant enzymes

    Get PDF
    Background: Ageing is associated with gastrointestinal dysfunction, which can have a major impact on quality of life of the elderly. A number of changes in the innervation of the gut during ageing have been reported, including neuronal loss and degenerative changes. Evidence indicates that reactive oxygen species (ROS) are elevated in ageing enteric neurons, but that neurotrophic factors may reduce generation of neuronal ROS. Two such factors, glial cell line derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) have also been found to protect enteric neurons against oxidative stress induced cell death of enteric ganglion cells in vitro. We have investigated the possible roles of neurotrophic factors further, by examining their expression in the gut during ageing, and by analysing their effects on antioxidant enzyme production in cultures of enteric ganglion cells. Results: Analysis of the expression of GDNF and its receptors c-Ret and GFR α − 1 in rat gut by RT-PCR showed that expression continues throughout life and into ageing, in both ad libitum(AL) and calorically-restricted (CR) animals. Levels of expression of GDNF and GFR α − 1 were elevated in 24 month AL animals compared to 24 month CR animals, and to 24 CR and 6 month control animals respectively. The related factor Neurturin and its receptor GFR α − 2 were also expressed throughout life, the levels of the GFR – α-2(b) isoform were reduced in 24 m AL animals. Immunolabelling showed that c-Ret and GFR α − 1 proteins were expressed by myenteric neurons in ageing animals. GDNF, but not NT-3, was found to increase expression of Cu/Zn superoxide dismutase and catalase by cultured enteric ganglion cells. Conclusions: The neurotrophic factors GDNF and neurturin and their receptors continue to be expressed in the ageing gut. Changes in the levels of expression of GDNF , GFR α-1 and GFR α-2(b) isoform occurred in 24 m AL animals. GDNF, but not NT-3, increased the levels of antioxidant enzymes in cultured enteric ganglion cells, indicating a possible mechanism for the reported protective effect of GDNF against menadione-induced neuronal apoptosis in the ageing gut. Together these data suggest that GDNF family members may play a protective role in the gut throughout life, and support the suggestion that dysregulation of neurotrophic factor support could contribute to neuronal ageing in the gut

    Circadian Clock Gene Expression in the Coral Favia fragum over Diel and Lunar Reproductive Cycles

    Get PDF
    Natural light cycles synchronize behavioral and physiological cycles over varying time periods in both plants and animals. Many scleractinian corals exhibit diel cycles of polyp expansion and contraction entrained by diel sunlight patterns, and monthly cycles of spawning or planulation that correspond to lunar moonlight cycles. The molecular mechanisms for regulating such cycles are poorly understood. In this study, we identified four molecular clock genes (cry1, cry2, clock and cycle) in the scleractinian coral, Favia fragum, and investigated patterns of gene expression hypothesized to be involved in the corals' diel polyp behavior and lunar reproductive cycles. Using quantitative PCR, we measured fluctuations in expression of these clock genes over both diel and monthly spawning timeframes. Additionally, we assayed gene expression and polyp expansion-contraction behavior in experimental corals in normal light:dark (control) or constant dark treatments. Well-defined and reproducible diel patterns in cry1, cry2, and clock expression were observed in both field-collected and the experimental colonies maintained under control light:dark conditions, but no pattern was observed for cycle. Colonies in the control light:dark treatment also displayed diel rhythms of tentacle expansion and contraction. Experimental colonies in the constant dark treatment lost diel patterns in cry1, cry2, and clock expression and displayed a diminished and less synchronous pattern of tentacle expansion and contraction. We observed no pattern in cry1, cry2, clock, or cycle expression correlated with monthly spawning events suggesting these genes are not involved in the entrainment of reproductive cycles to lunar light cycles in F. fragum. Our results suggest a molecular clock mechanism, potentially similar to that in described in fruit flies, exists within F. fragum

    Modeling of Acoustic Emission Failure Mechanism Data from a Unidirectional Fiberglass/Epoxy Tensile Test Specimen

    Get PDF
    The purpose of this work was to model the acoustic emission (AE) flaw growth data that resulted from the tensile test of a unidirectional fiberglass/epoxy specimen. The data collected and stored during the test were the six standard AE quantification parameters for each event. A classification neural network was used to sort the data into five failure mechanism clusters. The resulting frequency histograms of the sorted data were then mathematically modeled herein using the three types of Johnson distributions: bounded, lognormal, and unbounded. These provided a reasonably good fit for all six AE parameter distributions for each of the five failure mechanisms

    LGMD2I in a North American population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a marked variation in clinical phenotypes that have been associated with mutations in <it>FKRP</it>, ranging from severe congenital muscular dystrophies to limb-girdle muscular dystrophy type 2I (LGMD2I).</p> <p>Methods</p> <p>We screened the <it>FKRP </it>gene in two cohorts totaling 87 patients with the LGMD phenotype.</p> <p>Results</p> <p>The c.826C>A, p.L276I mutation was present in six patients and a compound heterozygote mutation in a seventh patient. Six patients had a mild LGMD2I phenotype, which resembles that of Becker muscular dystrophy. The other patient had onset before the age of 3 years, and thus may follow a more severe course.</p> <p>Conclusion</p> <p>These findings suggest that LGMD2I may be common in certain North American populations. This diagnosis should be considered early in the evaluation of LGMD.</p

    Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations.

    Get PDF
    SF3B1, SRSF2, and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the effect of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34+ cells of 84 patients with MDS. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis, and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whereas several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms that independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations, respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the effect of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology

    Circadian rhythms and fertility

    Get PDF
    Circadian rhythms impact on a wide range of physiological systems and this impact extends to fertility, such that disruptions to timing systems can impact upon reproductive capacity. This is highlighted most obviously in mutant mouse models whereby deletion or mutation of single genes results not only in disrupted circadian rhythmicity, but also compromised male and female reproductive function. In this review, we discuss the presence of circadian clocks in female and male reproductive tissues and the role these clocks play in the generation of oestrus cycles, ovulation, sperm generation, implantation and the maintenance of pregnancy. Given the increased incidence of shiftwork and international travel which disrupt circadian rhythmicity, and the increasing prevalence of reproductive technologies whereby early embryo development occurs without external time cues, it is important for us to consider the role of circadian rhythms in fertility.David J. Kennaway, Michael J. Boden and Tamara J. Varco

    An Unexpected Role for the Clock Protein Timeless in Developmental Apoptosis

    Get PDF
    Background: Programmed cell death is critical not only in adult tissue homeostasis but for embryogenesis as well. One of the earliest steps in development, formation of the proamniotic cavity, involves coordinated apoptosis of embryonic cells. Recent work from our group demonstrated that c-Src protein-tyrosine kinase activity triggers differentiation of mouse embryonic stem (mES) cells to primitive ectoderm-like cells. In this report, we identified Timeless (Tim), the mammalian ortholog of a Drosophila circadian rhythm protein, as a binding partner and substrate for c-Src and probed its role in the differentiation of mES cells. Methodology/Principal Findings: To determine whether Tim is involved in ES cell differentiation, Tim protein levels were stably suppressed using shRNA. Tim-defective ES cell lines were then tested for embryoid body (EB) formation, which models early mammalian development. Remarkably, confocal microscopy revealed that EBs formed from the Tim-knockdown ES cells failed to cavitate. Cells retained within the centers of the failed cavities strongly expressed the pluripotency marker Oct4, suggesting that further development is arrested without Tim. Immunoblots revealed reduced basal Caspase activity in the Tim-defective EBs compared to wild-type controls. Furthermore, EBs formed from Tim-knockdown cells demonstrated resistance to staurosporine-induced apoptosis, consistent with a link between Tim and programmed cell death during cavitation. Conclusions/Significance: Our data demonstrate a novel function for the clock protein Tim during a key stage of early development. Specifically, EBs formed from ES cells lacking Tim showed reduced caspase activity and failed to cavitate. As a consequence, further development was halted, and the cells present in the failed cavity remained pluripotent. These findings reveal a new function for Tim in the coordination of ES cell differentiation, and raise the intriguing possibility that circadian rhythms and early development may be intimately linked. © 2011 O'Reilly et al
    • …
    corecore