714 research outputs found

    Efficiency analysis of PV power plants shaded by MV overhead lines

    Get PDF
    This paper deals with the occurrence of hot spot phenomena in photovoltaic (PV) systems under partial shading caused by objects on some parts of the modules. An interesting case of diffuse shadows is determined by overhead distribution lines whose path crosses or are in the proximity of the PV power plants. Investigating the impact of these shadows on reducing the power production of PV or on damaging the PV modules as the modules’ temperature is increasing, is of high interest. At the SolarTech laboratory of Politecnico di Milano, the conditions for hot spot phenomena occurrence due to the overhead lines shading the PV cells were reproduced. Two experimental campaigns were carried out to investigate the current–voltage and power–voltage characteristics, and the energy production. In each experimental campaign, the built shading structure was considered fixed and different shading conditions were created based on the natural displacement of the sun. The hot spot phenomena was revealed on a field PV installation in Italy, caused my medium voltage overhead lines shading the PV cells, using infrared imagery

    HOT-SPOT PHENOMENON IN PV SYSTEMS WITH OVERHEAD LINES PARTIAL SHADING

    Get PDF
    This paper deals with the occurrence of hot-spot phenomenon in photovoltaic systems under PV partial shadowing. In an experimental campaign, the hot-spot phenomenon was revealed on a PV installation in Italy, caused my medium voltage overhead lines shadowing the PV cells. Starting from these practice case studies, at the SolarTech laboratory of Politecnico di Milano, the conditions for hot-spot phenomenon occurrence due to the overhead lines shading the PV cells were reproduced. Two experimental campaigns were carried out to investigate the current-voltage and power-voltage characteristics, and the energy production. In each experimental campaign, the built shadowing structure was considered fixed, and different shadowing conditions were created based on the natural displacement of the sun. Still, for occurring the hot- spot phenomenon during the laboratory tests, more PV modules must be connected in parallel

    Optimization Models for islanded micro-grids: A comparative analysis between linear programming and mixed integer programming

    Get PDF
    This paper presents a comparison of optimization methods applied to islanded micro-grids including renewable energy sources, diesel generators and battery energy storage systems. In particular, a comparative analysis between an optimization model based on linear programming and a model based on mixed integer programming has been carried out. The general formulation of these models has been presented and applied to a real case study micro-grid installed in Somalia. The case study is an islanded micro-grid supplying the city of Garowe by means of a hybrid power plant, consisting of diesel generators, photovoltaic systems and batteries. In both models the optimization is based on load demand and renewable energy production forecast. The optimized control of the battery state of charge, of the spinning reserve and diesel generators allows harvesting as much renewable power as possible or to minimize the use of fossil fuels in energy production

    Characterization of Bifacial Photovoltaic Modules Based on I-V Curves Outdoor Measurement

    Get PDF
    Photovoltaic (PV) systems are well known for their simplicity of design, environmental friendliness, and low maintenance. Among the PV technologies, the behaviour of bifacial PV modules was studied in this research. Measurements of the I-V curves were carried out in the SolarTechLAB test facility at the Department of Energy of Politecnico di Milano, Italy, to detect the bifacial PV module behaviour, mainly in terms of power performance. In particular, I-V and power-voltage curves were measured at different tilt angles to consider several irradiance and cell temperature levels with both sides uncovered as well as with the back side covered. This last configuration was tested to evaluate the contribution of the rear face in the overall photoelectric conversion process. The comparison between the bifacial and monofacial operations highlighted that the power at the maximum power point of the bifacial operation can increase up to 13%. At the same time, leaving the rear face free allows for reducing the bifacial cell temperature up to about 6°C

    Expression of LGR-5, MSI-1 and DCAMKL-1, putative stem cell markers, in the early phases of 1,2-dimethylhydrazine-induced rat colon carcinogenesis: correlation with nuclear β-catenin.

    Get PDF
    BACKGROUND: Colon cancer stem cells may drive carcinogenesis and account for chemotherapeutic failure. Although many markers for these cells have been proposed, there is no complete agreement regarding them, nor has their presence in the early phases of carcinogenesis been characterized in depth. METHODS: The expression of the putative markers LGR-5 (leucine-rich-repeat-containing G-protein-coupled receptor 5), MSI-1 (Musashi-1) and DCAMKL-1 (doublecortin and calcium/calmodulin-dependent protein kinase-like-1) was studied in normal colon mucosa (NM), in the precancerous lesions Mucin Depleted Foci (MDF) and in macroscopic tumours (adenomas) of 1,2-dimethylhydrazine-treated rats. Co-localization between these markers and nuclear β-catenin (NBC), an attributed feature of cancer stem cells, was also determined. Moreover, since PGE(2) could increase NBC, we tested whether short-term treatment with celecoxib, a COX-2 inhibitor (2 weeks, 250 ppm in the diet) could reduce the expression of these markers. RESULTS: LGR-5 expression in NM was low (Labelling Index (LI): 0.22±0.03 (means±SE)) with positive cells located mainly at the base of the crypts. Compared to NM, LGR-5 was overexpressed in MDF and tumours (LI: 4.7±2.0 and 2.9±1.0 in MDF and tumours, respectively, P<0.01 compared to NM). DCAMKL-1 positive cells, distributed along the length of normal crypts, were reduced in MDF and tumours. Nuclear expression of MSI-1, located mainly at the base of normal crypts, was not observed in MDF or tumours. In both MDF and tumours, few cells co-expressed LGR-5 and NBC (LI: 1.0±0.3 and 0.4±0.2 in MDF and tumours, respectively). Notwithstanding the lower expression of DCAMKL-1 in tumours, the percentage of cells co-expressing DCAMKL-1 and NBC was higher than in NM (LI: 0.5±0.1 and 0.04±0.02 in tumours and NM, respectively). MSI-1 and NBC co-localization was not observed. Celecoxib did not reduce cells co-expressing LGR-5 and NBC. CONCLUSIONS: Based on its prevalent localization at the base of normal crypts, as expected for stem cells, and on the overexpression in precancerous lesions and tumours, we support LGR-5, but not MSI-1 or DCAMKL-1, as putative neoplastic stem cell marker. In both MDF and tumours, we identified LGR-5-positive cells co-expressing NBC which could be a subpopulation with the highest stem cell features

    Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power

    Get PDF
    In this paper an artificial neural network for photovoltaic plant energy forecasting is proposed and analyzed in terms of its sensitivity with respect to the input data sets. Furthermore, the accuracy of the method has been studied as a function of the training data sets and error definitions. The analysis is based on experimental activities carried out on a real photovoltaic power plant accompanied by clear sky model. In particular, this paper deals with the hourly energy prediction for all the daylight hours of the following day, based on 48 hours ahead weather forecast. This is very important due to the predictive features requested by smart grid application: renewable energy sources planning, in particular storage system sizing, and market of energy

    Outdoor Performance of Organic Photovoltaics: Comparative Analysis

    Get PDF
    Organic photovoltaic (OPV) solar cells represent an emerging and promising solution for low-cost clean energy production. Being flexible and semi-transparent and having significant advantages over conventional PV technologies, OPV modules represent an innovative solution even in applications that cannot be based on traditional PV systems. However, relatively low efficiencies, poor long-term stability, and thermal issues have so far prevented the commercialization of this technology. This paper describes two outdoor experimental campaigns that compared the operation of OPV modules with traditional PV modules—in particular crystalline silicon and copper–indium– selenium (CIS)—and assessed the OPV modules’ power generation potential in vertical installation and facing towards the cardinal directions

    Transient Analysis of Large Scale PV Systems with Floating DC Section

    Get PDF
    The increasing penetration of renewable sources with power-electronic interfaces in power systems is raising technical problems and the overall efficiency of photovoltaic systems can decrease dramatically. In this context, the optimal layout for the photovoltaic system is required. The most adequate strategy to connect the renewable system to the electrical power grid or to supply the end users must be adopted. The present paper proposes a design layout of a PV plant using a DC bus system to improve the overall energy conversion efficiency. An analysis of steady-state system stability, voltage drop and DC cable conduction losses is conducted. The leakage currents to the ground are investigated through simulations. Experimental results are shown focused on the analysis of optimal layout of photovoltaic systems under particular operating conditions

    Snail Trails and Cell Microcrack Impact on PV Module Maximum Power and Energy Production

    Get PDF
    —This paper analyzes the impact of the snail trail phenomena on photovoltaic (PV) module performances and energy production. Several tests (visual inspection, maximum power determination, dielectric withstand, wet leakage current, and electroluminescence test) were carried out on 31 PV modules located in a PV plant in Italy. The electroluminescence test highlighted the strong correlation between the appearance of snail trails and presence of damaged cells in PV modules. The daily energy produced by four PV modules affected by snail trails ranged between 68% and 88% of the energy produced by a damage free commercial PV module over the same period
    • …
    corecore