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Abstract7

In this paper an artificial neural network for photovoltaic plant energy fore-8

casting is proposed and analyzed in term of its sensitivity with respect to the9

input data sets.10

Furthermore, the accuracy of the method has been studied as a function11

of the training data sets and error definitions. The analysis is based on exper-12

imental activities carried out on a real photovoltaic power plant accompanied13

by clear sky model.14

In particular, this paper deals with the hourly energy prediction for all15

the daylight hours of the following day, based on 48 hours ahead weather16

forecast. This is very important due to the predictive features requested17

by smart grid application: renewable energy sources planning, in particular18

storage system sizing, and market of energy.19

Keywords: Artificial neural network, Energy forecasting, Photovoltaic20

system21

1. Introduction22

The electricity produced by renewable energy sources (RES) is constantly23

world-wide increasing thanks to government policies and technical progress.24

Europe has experienced one of the largest growths: in the last five years the25

electricity generation by RES, and in particular by photovoltaic (PV) and26

wind plants, is doubled. However, the RES energy productions are charac-27

terized by fluctuating output, because they are influenced by meteorological28

conditions.29
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Challenges of controlling and maintaining energy from inherently inter-30

mittent sources in grid-connected systems involve many features: efficiency,31

reliability, safety, stability of the grid and ability to forecast energy produc-32

tion. In particular, PV and wind power forecasting, as an estimation of the33

expected power production, is crucial to help the grid operators to better34

manage the electric balance between power demand and supply, and to im-35

prove the penetration of distributed renewable energy sources. Furthermore,36

in countries with a day-ahead electricity market, large power plants based on37

RES can act, as any other electricity producer, providing power generation38

sale offers (bids) to the market. In electricity markets, when a power pro-39

ducer does not follow the scheduled bid it will be penalized with retributions40

lower than those established in the market for those hours with deviation41

between the electric energy actually produced and that presented in the bid42

[15, 24].43

These technical and economic reasons have driven the development of44

power forecasting models for wind farms and relatively large grid-connected45

PV plants, with the aim to predict the hourly output power up to 24 hours46

ahead and even more.47

In recent years several power forecasting models related to PV plants have48

been published. The existing solutions can be classified into the categories49

of physical, statistical and hybrid methods. Some of these models were at50

first oriented to obtain solar radiation predictions [14, 18] while other works51

present models specifically dedicated to the forecasting of the hourly power52

output from PV plants [12, 20]. Nowadays the most applied techniques53

to model the stochastic nature of solar irradiance at the ground level and54

thus the power output of PV installations are the statistical methods; in55

particular regression methods are often employed to describe complex non-56

linear atmospheric phenomena for few-hours ahead forecast and specific soft-57

computing techniques based on artificial neural network (ANN) are used58

for few-hours power output forecast [17]. Some other papers use physical59

methods [15, 23, 21]. Some papers report the comparison of the results60

obtained with different models based on two or more forecasting techniques61

[17, 18, 15]. Nowadays the most important forecasting horizon is 24 hours of62

the next days. Only a few papers describe forecasting models used to predict63

the daily irradiance or directly energy production of the PV plant for all the64

daylight hours of the following day [24, 15, 25].65

In order to define the accuracy of the prediction, some error indexes are66

introduced to evaluate the performances of the forecasting models. Some of67
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Nomenclature

G global solar radiation on module surface (W/m2)
P PV output power (W)
REL Reliability Coefficient
e error (W)
NMAE Normalized Mean Absolute Error
WMAE Weighted Mean Absolute Error
nRNSE Normalized root mean square error
C Rated power (W)
k Generic time sample
CSRM Clear Sky Radiation Model
STC Standard Test Conditions
m measured
p predicted
1/4h quarter of hour
h hour sample
N total number of considered samples (daylight hours)
i single trial of ensemble method of ANN
n number of trials of ensemble method of ANN

these definitions come from statistics while others originate from regulatory68

authority for market issues [1].69

This paper uses a model based on ANN accompanied by clear sky model70

for input data validation for next-day energy forecasting of a PV plant with71

the aim to evaluate its sensitivity. It has been assessed by changing the size of72

the training data sets in input, the number of iterations and launching single-73

/multiple-runs. Different error definitions are also calculated and analyzed in74

order to evaluate the results. The analysis is based on experimental activities75

carried out by a real PV power plant.76

The paper is organized as follows: in Section 2 a brief review of the hourly77

energy production forecasting methods is presented. In Section 3, the applied78

method is described giving emphasis to the pre-processing data analysis. In79

Section 4 some error indexes are defined in order to evaluate the performances80

of the forecasting models. In Section 5 the hourly energy prediction for all81

the daylight hours of the following day of a real plant is presented, in terms of82

hourly error, normalized mean absolute error, weighted mean absolute error,83

and normalized root mean square error. In the end some conclusions are84

stated.85
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2. Energy forecasting methods86

RES energy production forecasting methods are commonly divided in87

different categories: physic, stochastic and hybrid. An analysis of the state-88

of-the-art approaches is proposed in [23]. Physical models are based on math-89

ematical equations which describe the ability of PV systems to convert the90

introduced meteorological resources into electrical power [14], [15]. These91

models can be very simple, if based only to the global solar radiation, or92

more complicated if they include additional parameters. As a matter of fact,93

it is not easy to predict PV module energy production since it depends on94

several parameters. The conversion process is affected by solar radiation,95

cell temperature, presence of shadow [8] and the load resistance. Moreover,96

information provided by manufacturer is usually limited and only at nominal97

operating conditions. The major disadvantage of these models is that they98

have to be designed specifically for a particular plant and location.99

Statistical methods are based on the concept of persistence or stochastic100

time series. Regression methods often employed to describe complex non-101

linear atmospheric phenomena include the Auto-Regressive Moving Averages102

(ARMAs) method, as well as its variations, such as the Auto-Regressive103

Integrated Moving Averages (ARIMAs) method [18, 17]. The performance104

of these models is very good for few-minutes to few-hours ahead forecasts105

[18, 3]. Nonlinear methods, such as the Takagi-Sugeno (TS) fuzzy model [11]106

and wavelet-based methods [5], have been shown superior to linear models.107

Nowadays the most common way to forecast the future values of a time108

series is the use of machine learning methods [6]. Reviewed literature shows109

that ANN methods have been successfully applied for forecasts of fluctuat-110

ing energy supply. These methods learn to recognize patterns in data using111

training data sets. This is the main drawback: historical data about weather112

forecast and the real power production as well as environmental quantities113

are necessary to train the ANN and start the forecast of energy produc-114

tion by RES. Furthermore the ANN methods are iterative procedures with a115

stochastic base: in fact, at the first iteration, weighted links among neurons116

are randomly set; then they are optimized during iterations in order to mini-117

mize the error. For this reason the resulting forecasts depend on the specific118

trial. Therefore different trials can provide slightly different results. Usually119

the final profile is the average of the different trials led in a single run. This120

is called “ensemble method”. Some studies showed that ANN models using121

multivariate, such as sun duration, temperature, wind speed, and relative122
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humidity, can achieve much better performance than that using univariate123

[19].124

Any combination of two or more of the previously described methods is a125

hybrid model. The idea is to combine different models with unique features to126

overcome the single negative performance and finally improve the forecast.127

Recently, some papers show that all these methods need a phase of pre-128

processing the input data sets in order to increase the forecasting accuracy129

[16].130

Table 1 shows a possible time scale of RES energy forecasting. It in-131

cludes very short-term, short-term, medium-term and long-term forecasting132

[22]. The forecast up to 24-h ahead or even more is needed for the power133

dispatching plans, the optimization operations of grid-connected RES plants134

and control of energy storage devices. Usually the medium term forecast135

is requested for the electricity market. The most common forecast horizon136

term for PV systems is 24-h ahead. Table 1 has been set up with reference to137

wind, but it can be also applied with reference to PV. Anyway, forecasting138

term limits are not strictly defined and some different specifications may be139

granted depending on the application of the forecasting model [24].

Table 1: Time scale classification for RES Forecasting
Term Range Application
Very short Few sec.–30’ Control & adjustment actions
Short 30’–6h Dispatch planning; load gain/drop
Medium 6h–1 day Generator on/off; operational security;

electricity market
Long 1 day–1 week Unit commitment; reserve requirement;

maintenance schedule

140

3. The proposed method141

A method based on ANN was developed in order to make the hourly142

prediction of the production of a RES plant. Fig. 1 illustrates the different143

phases carried out for the proposed procedure. As regards the training phase,144

both the weather and the output power measured on the PV systems histor-145

ical data sets are required in order to lead a supervised learning of the ANN.146

Once the ANN is trained and tuned, it can be used to provide predictions147

of the PV system output power by supplying only the weather forecasts as148

input. After this phase, the accuracy assessment of the results should be149
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carried out. Again, this step needs the output power measured on the PV150

systems. Furthermore, to evaluate the accuracy of the method, as well as151

the accuracy of the weather forecast, the real parameters measured on the152

plant (such as the solar radiation) are really important.153

Figure 1: Block diagram of the PV forecasting method based on ANN.

3.1. Pre-processing and data validation154

Before any other step, historical measured data must be always validated,155

since unreliable data increase the odds of higher errors in the forecast. The156

pre-processing block initially includes the control of the coherence among157

the main variables measured in the PV plant, such as the solar radiation158

and the PV output power, and a theoretical model of the solar radiation159

mathematically computed according to the geographical coordinates of the160

PV plant site, by means of a clear sky solar radiation model (CSRM) [4].161

Thus the aim of using CSRM in this preliminary step is not only to determine162

the time span of the forecast between the sunrise and the sunset of each day,163

but also to validate the reliability of each fifteen minutes sample. Fig. 2164

shows the flow chart used for this step. First it starts acquiring the values165

of Gk
CSRM,1/4h, Gk

m,1/4h and P k
m,1/4h which are the clear sky solar radiation,166

the measured solar radiation and the PV output power respectively in the167

k-th quarter of an average hour sample. Then, by comparing the other two168
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variables, when the CSRM is positive, the reliability coefficient of the sample169

RELk
1/4h, is equal to 1 if all the conditions occur at the same time, otherwise170

it is equal to 0. When Gk
m,1/4h is greater than 0 at the same time when P k

m,1/4h171

is equal to 0 the reliability coefficient of the sample RELk
1/4h, is equal to 1.172

In this case the “failure in the PV plan” condition or the “snow on the PV173

module” could occur.174

Lastly if RELh, the hourly average of the four reliability coefficients in175

the same hour, is greater than 0, the h-th hourly sample is considered in the176

next training and forecasting steps, otherwise not. Secondarily, there must be177

always correspondence between the number of samples and the time-instant178

of the measured data and those provided by the meteorological service.179

yes

no

no

yes

no yes

noyes

RELIABLE
h-SAMPLE

UNRELIABLE 
h-SAMPLE

,¼  

,¼  

,¼  

[W/m²]

[W/m²]

[W]

k
m h

k
CSR h

k
m h

G

G

P

,¼  0?
k
CSR hG 

,¼  0?
k
m hG 

,¼  0?k
m hP 

¼  0k
hREL  ¼  1k

hREL 

4

1
¼  

 4
k

k
h

h

REL
REL 



 0.25?hREL 

START
PRE-PROCESS & 

VALIDATION

END
PRE-PROCESS & 

VALIDATION

Figure 2: Flow chart of the Pre-Processing and data Validation block.

3.2. The forecasting procedure180

Among the several existing methods in literature [6], the method here181

used is based on a statistical approach (specifically ANN) trained with clas-182

sical algorithms. In this case, the implemented ANN has a classical structure183
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called multi-layer perceptron (MLP), while the chosen training procedure for184

the neural network is the error back-propagation (EBP). The inputs of the185

tool are the weather forecasts provided by the meteorological service, the ge-186

ographical coordinates of the site as well as the date and time to determine187

the correct sun position. The output of the tool is the predicted value of the188

hourly power produced by the PV plant for a given time. The training of189

the ANN consists in the updating of the weights between the neurons in the190

different layers in several iterations comparing the expected data with the191

historical-actual ones. On each iteration the existing links between the dif-192

ferent input variables are evaluated and the weights are updated accordingly.193

3.3. Error assessment194

According to the error definitions of the output power forecast, in com-195

parison with the measured data, an error assessment is led.196

4. Error definitions197

In order to correctly define the accuracy of the prediction and the related198

error, it is necessary to define the indexes that can be used to evaluate the199

performances of the forecasting model. Some of these definitions come from200

statistics and are well-known [25]. Others are introduced by regulatory au-201

thority for market issues: in Italy, for instance, the Authority for electricity202

and gas (AEEG) [1]. The error definitions are really different among each203

other. Also technical papers present a lot of these indexes, therefore here we204

report some of the most commonly used error definitions. The starting refer-205

ence point is the hourly error eh defined as the difference between the average206

power produced (measured) in the h-th hour Pm,h and the given prediction207

Pp,h provided by the forecasting model [15], [16]:208

eh = Pm,h − Pp,h (W) (1)

From this basic definition, then other definitions can be introduced. The209

absolute hourly error eh,abs which is the absolute value of the previous defi-210

nition (eh can give both positive and negative values):211

eh,abs = |eh| (W) (2)
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The hourly error percentage could be e%,p, if it is based on the hourly212

output expected power hour Pp,h:213

e%,p =
|eh|
Pp,h

· 100 (3)

or, if it is based on the hourly output measured power hour Pm,h:214

e%,m =
|eh|
Pm,h

· 100 (4)

These two errors will be compared in section 5.215

The normalized mean absolute error NMAE%, based on net capacity of216

the plant C:217

NMAE% =
1

N

N∑
h=1

|Pm,h − Pp,h|
C

· 100 (5)

where N represents the number of samples (hours) considered: usually it218

is referred to a day, a month or a year. For this indicator the rated power of219

the PV system was considered as C.220

The weighted mean absolute error WMAE%, based on total energy pro-221

duction:222

WMAE% =

∑N
h=1 |Pm,h − Pp,h|∑N

h=1 Pm,h

· 100 (6)

The normalized root mean square error nRMSE, based on the maximum223

observed power output Pm,h:224

nRMSE% =

√∑N
h=1 |Pm,h−Pp,h|2

N

max(Pm,h)
· 100 (7)

NMAE% is largely used to evaluate the accuracy of predictions and trend225

estimations. In fact, often relative errors are large because they are di-226

vided by small power values (for instance the low values associated to sunset227
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and sunrise): in such cases, WMAE% could result very large and biased,228

while NMAE%, by weighting these values with respect to the capacity C, is229

more useful. The nRMSE% measures the average magnitude of the absolute230

hourly errors eh,abs. In fact it gives a relatively higher weight to larger errors,231

thus allowing to emphasize particularly undesirable results.232

5. Case study233

This section describes the 1-day ahead hourly forecast achieved by using234

the ANN method. The prediction is carried out every day at the same235

time in the morning for all the daylight hours of the following day. The236

considered real plant is a 264kWp rated power, facing South; it is composed237

of polycrystalline silicon photovoltaic panels, 19◦ tilted, fixed on the roof of238

a factory located in the North of Italy. Different simulations have been run239

in order to compare the errors (3) and (4) both in terms of single trial and240

ensemble profile (based on 10 trials) of the ANN. Besides a simple sensitivity241

analysis of the method has been performed as a function both of the training242

set and the period of the year. This analysis consisted in 30 days forecasting,243

varying the above mentioned settings and evaluating the errors of the whole244

estimated period in all the daylight hours. Finally the results of some peculiar245

days are presented as typical cases which more frequently may occur.246

5.1. Characteristics of data and models247

While the hourly PV plant electric power generation data are recorded248

with measurement equipment on site, the weather data are provided by a249

forecasting service with 72 hours in advance. With reference to the predic-250

tion of hourly production relative to a day ahead, the analysis is performed251

using an ANN with the following characteristics: 240 days (8 months) data252

set, 9 neurons in the first layer, 7 neurons in the second layer, and 3000 iter-253

ations for each trial. Different structures of ANN have been tested both in254

terms of number of neurons [2] and training iterations [9], and the above de-255

scribed configuration proved to be a good compromise in terms of efficiency256

and computational time effectiveness. The training period over the same257

forecasting span instead was changed both in terms of number of days and258

starting point.259

5.2. Results260

The results of this analysis concern specifically the error definitions pre-261

viously exposed. They are analyzed following different approaches, as better262
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clarified in the following subsections, in order to underline the efficiency of263

the ANN method due to its setting changes. In this paper all the errors are264

referred only to the prediction in the daylight hours.265

266

A. Comparison of error definitions267

The starting point of the error analysis is the hourly error definition (1).268

Its absolute value can be related, for the same computed forecast, both to269

the hourly average produced (measured) power Pm,h, as expressed by (4),270

and to the forecast power in the h-th hour Pp,h (3). Since the ANN is a271

stochastic method, the forecast activity is performed several times (or by272

several neural network’s casts in parallel at the same time) for the same273

time period, resulting in different predicted PV output power profiles. Each274

predicted profile, which is referred to the i-th simulation, is therefore called275

a trial.276

Thus the final hourly power forecast Pp,h is the average of power P i
p,h over277

i samples referred to the same h hour. We obtain for n different trials, the278

following expression:279

Pp,h =
n∑

i=1

P i
p,h

n
(W ) (8)

which is the power forecast by the so-called ensemble method. Therefore the280

hourly percentage errors (3) and (4), can be redefined respectively as:281

e%,p =
|Pm,h −

∑n
i=1

P i
p,h

n
|∑n

i=1

P i
p,h

n

· 100(%) (9)

and:282

e%,m =
|Pm,h −

∑n
i=1

P i
p,h

n
|

Pm,h

· 100(%) (10)

where n is the number of trials as already explained.283

Fig. 3 shows the absolute hourly error of each trial (thin lines) and the284

absolute hourly error of the ensemble forecast (thicker lines). This format is285
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Figure 3: Absolute hourly error based both on predicted (blue) and measured (red) output
power for each trial (thin lines) and ensemble (thicker lines).

shown both for the hourly errors based on the predicted output power e%,p286

(in blue) and the hourly error based on the measured output power e%,m (in287

red).288

In our analysis we used the first 90 days of historical data for training and289

the last 150 days for forecast evaluation. All the curves reported in Fig. 3290

are ordered based on hourly forecasting error magnitude starting from the291

largest to the smallest, truncating at 1500 samples, for an easier comparison.292

Following this approach we can draw some considerable results. First of293

all it can be observed that the hourly error based on the predicted power294

e%,p is generally smaller than the one based on the measured power e%,m.295

Secondly the hourly ensemble error based on the predicted power is296

smaller than each relative trials. For this reason later on the forecasted pro-297

files are evaluated by using the ensemble method based on predicted power.298

Finally, the ensemble error based on the measured power, by definition299

(from eq. 10), is just the average value over the n trials.300

301

B. Training time period analysis302

Figure 4 shows the errors evaluated as a function of size of the training303

set (60, 90 and 120 days) and of the different 30 days’ predicted period in304
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various times of the year. The error definitions are applied to this entire305

period with reference to daylight hours. Fig. 5 shows, for instance, how306

this process works for the PV output forecasting in the period from 181th to307

210th day.308

Generally the longer is the training set size, the lower are the errors. But309

some peculiar weather conditions play an important role: for instance, in310

the considered 240 days dataset, there is snow from day 27 to 53, 66 and311

67. Also few days after, the actual weather conditions were severe (day 101,312

104 and 105). It can be noticed how these conditions affected the forecasting313

reliability. In fact, even if the number of the training days increased, if they314

included very peculiar weather conditions, the global forecasting accuracy315

was worse.316

In order to identify those days which may affect the training set relia-317

bility, it can be useful to sort the dataset according to the daily clearness318

index kt, defined as the ratio of the horizontal global irradiance to the corre-319

sponding irradiance available out of the atmosphere [10]. In [13] an example320

of clustering days with these criteria is provided and, in this research, the321

dataset has been classified, according to the typical values of kt for the PV322

plant site, into three partitions as reported in Table 2.323

Table 2: Clearness index kt partitions.
Weather condition kt range
Clear kt > 0.45
Partially cloudy 0.25 > kt > 0.45
Cloudy kt < 0.25

Table 3: Classification of the training periods.
Days Clear Part.cloudy Cloudy
1-30 57% 30% 13%
31-60 60% 17% 23%
61-90 87% 7% 7%
91-120 63% 13% 23%
121-150 77% 7% 17%
151-180 83% 17% 0%
181-210 87% 13% 0%
211-240 93% 7% 0%
TOTAL 76% 14% 10%

In particular, as reported in Table 3, according to the clearness index324
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Figure 4: Errors as a function of the size of the training set and of the different period of
the year.

14



Figure 5: Scheme of the 30 consecutive forecasted days with a different size of the training
period.

classification the number of day-type is different in each of the 30-days period325

considered, especially in those forecast periods after May. Moreover the326

next forecast periods are close to summer, which reasonably means a higher327

number of “clear” or “partially cloudy” days in comparison to the previous328

periods. Indeed, during the 30 days periods after the 121-150, the number329

of “clear days” increases, whereas the number of “cloudy days” is lowered to330

zero. In fact the first forecasting period (121-150) has a comparable number331

of day-type mix, along with the increasing number of days employed in the332

training. And, as it is shown in Figure 4, evaluation indexes are largely333

constant. While, considering the day-type composition of the 151-180 period,334

it has no cloudy days at all, and the evaluation indexes are greatly affected335

with the 60 days training forecast not only for the lower number of days336

employed in the training, but also because the different mix of the day-type337

presents the highest number of “cloudy days”. Therefore it is clear that both338

quantity and quality of the samples in the training set are critical to the339

forecasting reliability and accuracy.340

A direct comparison of these results with prevoius ones presented in lit-341

erature is not easy: often error definitions and considered time frames differ342

from paper to paper. However, if we consider the above presented nRMSE343

values, we can see a significant agreement with results show in [23] and [17],344

which were obtained on more favorable conditions, i.e. from 1 to 12 hours345

ahead.346

347

C. Analysis of significant days348

Some typical days have been taken into account in order to evaluate the349

method forecast accuracy applied to a reduced number of hourly samples.350

The simulations have been carried out with the same settings listed before,351
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applied to three significant days with different weather conditions recorded352

in the month of May:353

(a) sunny day with sunny weather forecasts (Fig. 6),354

(b) partially cloudy day with variable weather forecasts (Fig. 7),355

(c) cloudy day (Fig. 8).356

These figures show the trends of the PV plant predicted power Pp and the357

measured power Pm based on the rated power of the plant C; the irradiance358

provided by the weather service Gp and the measured irradiance Gm based359

on the irradiance at the standard test conditions Gstc = 1000W/m2. Fur-360

thermore the NMAE%, nRMSE% and WMAE% forecasting errors referred361

only to the daylight hours are reported.362

It can be noticed that the error is highly related to the solar irradiance363

forecasting accuracy. Furthermore WMAE% becomes high during the un-364

stable days. The best case is represented by the typical sunny day (case (a)):365

the measured irradiance Gm is totally in agreement with the weather forecast366

provided by the meteorological service.367

Instead, in case (b) the measured irradiance Gm is only partially in agree-368

ment with the weather forecast provided by the meteorological service. In369

fact, the weather service was not able to accurately forecast the exact time370

when the instability appeared. Thus the forecasting error was mainly due371

to the time shift between predicted and measured data. Of course in this372

light further improvements are achievable improving the accuracy of weather373

service forecast, and on the other hand reducing the relative time interval374

for their predictions, namely from the cited 72 hours used in this work to at375

least 48 hours in advance.376

Finally, the worst case is represented by (c). In this case the measured377

power Pm is really low (full cloudy day) and consequently percentage errors378

are quite relevant even if the overall produced energy in that day is quite379

negligible. However, it is important to underline that this specific day repre-380

sents one of the worst cases over the entire data set analyzed in this paper.381

In all the considered cases, we noticed that the most relevant errors occur382

during sunrise and sunset; therefore, possible enhancement to our method383

can be performed by improving the way sunset and sunrise are taken into384

account, for instance by adopting hybrid methods, as shown in [7].385
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Figure 6: Predicted, measured power and irradiance curves, and errors in a sunny day.

Figure 7: Predicted, measured power and irradiance curves, and errors in a partially cloudy
day.
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Figure 8: Predicted, measured power and irradiance curves, and errors in an cloudy day.

6. Conclusion386

In this paper a PV energy forecasting method based on ANN is presented.387

The error assessment, according to the error definitions here introduced,388

shows that the ensemble error is smaller than those obtained by the single389

trials. Besides it has been highlighted that the method accuracy is strictly390

related to the historical data pre-process step and to the accuracy of the391

historical data set used for the training step. The trends of the errors clearly392

show how the accuracy in the sunny days is higher, while in partially cloudy393

and cloudy days the overall efficiency is slightly different. Some improvements394

are therefore connected to the reliability of the weather forecasting and to395

the pre-processing of the raw data to train the network.396
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