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Abstract—This paper analyzes the impact of the snail trail phe-5
nomena on photovoltaic (PV) module performances and energy6
production. Several tests (visual inspection, maximum power de-7
termination, dielectric withstand, wet leakage current, and elec-8
troluminescence test) were carried out on 31 PV modules located9
in a PV plant in Italy. The electroluminescence test highlighted the10
strong correlation between the appearance of snail trails and pres-11
ence of damaged cells in PV modules. The daily energy produced12
by four PV modules affected by snail trails ranged between 68%13
and 88% of the energy produced by a damage free commercial PV14
module over the same period.

Q1
15

Index Terms—Electroluminescence (EL), microcracks, photo-16
voltaic (PV) modules, PV system reliability, snail trail phenomena.17

I. INTRODUCTION18

THE direct use of solar energy for electrical energy pro-19

duction faced an intense development due to ongoing CO220

emission reduction policies and the significant technical de-21

velopments of photovoltaic (PV) technology. In addition, over22

the past decade, the cost production of PV cells has dropped,23

making electricity costs closer to conventional fuel costs. This24

development requires detailed evaluation of PV performances25

over lifetime to identify potential degradation phenomena [1].26

Examples of degradation phenomena occurring in operating27

PV systems are encapsulant browning, delamination and bub-28

ble formation in the encapsulant, back sheet polymer cracks,29

front surface soiling, blackening at the bottom edge of the mod-30

ule, junction box connections corrosion, busbar oxidation and31

discoloration, junction cables insulation degradation, and glass32

breakage [2]–[4].33

Among these, over the past few years, the “snail trails” (also34

known as worm marks or snail tracks) have been increasingly35

occurring in PV systems within few months after the installation.36

These effects appear on the front side or the edge of the solar37

cells [5], [6], such as a small narrow dark line and discoloration38

on the surface of the cell, [7], [8].39
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In previous works, the correlation between snail trail dis- 40

colorations within the cells and cell microcracks was demon- 41

strated. Meyer et al. performed chemical tests, Fourier transform 42

infrared investigations, and X-ray photoelectron spectroscopy 43

measurements on PV modules for snail trail defect analysis. 44

Snail trails were correlated with chemical reactions occurring 45

between silver of grid fingers and air humidity [5], [8]–[12]. 46

Köntges et al. used fluorescence radiation to investigate mi- 47

cro cracks in PV cells, in order to determine the number, the 48

position/orientation, and the frequency [13], [14]. Studies were 49

further carried out in [15], simulating the PV module power 50

affected by different crack types. The authors estimated that 51

cracks isolate a cell section leading to a module strings power 52

loss around 6–22%. They also suggested that the replacement of 53

the most damaged module in a string allows a power recovery 54

lower than the nominal power of a new module. 55

In [16], experiments to evaluate the impact of discolored lines 56

like snail trails were performed both in laboratory and outdoor 57

field, together with aging tests. A power reduction exceeding 58

5% was measured, and it was related to cell microcrack before 59

snail trail formation. 60

This paper is a follow-up of a previous work [17] and investi- 61

gates the performance of 31 PV modules under operation in a PV 62

plant in Italy. The modules considered in this paper include also 63

the four PV modules monitored in [17], where outdoor experi- 64

ments on PV panels affected by snail trails outlined a reduction 65

1) in the photogenerated current, 2) of the shunt resistance in 66

the electric equivalent circuit, and 3) of the energy production 67

by 35%. Due to absence of some tests, no ultimate conclusions 68

on the correlation between the snail trails phenomena and cells 69

microcrack could be extended. 70

In this paper, several additional analyses were performed to 71

highlight eventual issues besides visual defects as discoloration. 72

The analyses are indoor visual inspection, maximum power de- 73

termination, MST16 dielectric withstand, and wet leakage cur- 74

rent. An important test carried out was the electroluminescence 75

(EL) one, which allows correlating inactive (“broken”) cell area 76

and the level of performance loss. After the initial screening, 77

the same modules considered in [17] were evaluated with long 78

outdoor testing lasting five months 1) to compare the power and 79

energy performances after two additional years of operation and 80

2) to assess the long-term behavior of cell cracks or snail trails 81

under real operating conditions. The long-term observation of 82

modules with grid finger discoloration is really a new contribu- 83

tion to this work, which, to the knowledge of the authors, was 84

not previously investigated. 85

The experimental measurements were carried out at 86

SolarTechLAB [18], Politecnico di Milano, Italy. 87
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Fig. 1. Experimental procedure flowchart.

The paper is organized as follows: Section II describes the88

experimental procedures and the conducted tests. Section III89

reports the indoor experimental results, while Section IV reveals90

the energy experimental results for assessing snail trails effects91

on PV performances. In Section V, a comparison between the92

old and new outdoor measurements is presented. Section VI93

reports the final conclusions and the discussion of obtained94

results.95

II. EXPERIMENTAL PROCEDURE96

The modules considered in this study were taken from a PV97

plant in operation. Among 4000 PV modules installed, 31 were98

selected by visual inspection: 16 modules affected by the snail99

trails at different rates and 15 with no trace of degradation.100

As mentioned in [17], all the modules were manufactured in101

2011 and have been operating since early 2012. Before their102

installation, each module performance was measured revealing103

good agreement with the corresponding datasheet, and no snail104

trail phenomenon or other issues were identified. After less than105

six months, these PV modules started to report a performance106

decay correlated with snail trail formation, since neither dam-107

ages nor artificial breakage occurred. Performance decay was108

first evaluated in 2013 and, then, in 2015. During 2013–2015,109

the PV modules were in operation.110

A multistep procedure (summarized in Fig. 1) was defined111

to assess the status and performances of the 31 modules. The112

procedure can be divided into two phases: the first one, named113

indoor tests, was carried out for all the modules, and the second114

one, named outdoor tests, for a limited number of modules. The115

following analyses were carried out.116

A. Visual Inspection Tests 117

Visual inspection tests have been performed as defined by 118

IEC 61215 [19]. For the purposes of design qualification and 119

type approval, major visual defects were considered to be the 120

following: 121

1) broken, cracked, or torn external surfaces, including su- 122

perstrates, substrates, frames, and junction boxes; 123

2) bent or misaligned external surfaces, including super- 124

strates, substrates, frames, and junction boxes to the extent 125

that the installation and/or operation of the module would 126

be impaired; 127

3) cracks, bubbles, or delaminations forming a continuous 128

path between any part of the electrical circuit and the 129

edge of the module; 130

4) loss of mechanical integrity, to the extent that the instal- 131

lation and/or operation of the module would be impaired. 132

B. Maximum Power Determination 133

The I–V characteristic curves were traced at standard test 134

conditions (STC) in a sun simulator chamber of class AAA and 135

I–V curve generator as defined by IEC 61215 [19]. The obtained 136

results, at STC, were the following: 137

1) the open-circuit voltage VOC ; 138

2) the voltage at maximum power point (MPP) VMPP ; 139

3) the short-circuit current ISC ; 140

4) the current at MPP IMPP ; 141

5) the power at MPP PMPP . 142

Using the maximum power value, the power variation (EFF) 143

with respect to the nominal power value (i.e., indicated in the 144

PV module datasheet) was calculated as follows: 145

EFF =
PMPP − PN

PN
· 100. (1)

A negative value of EFF means a reduction in the power pro- 146

duction with respect to the datasheet nominal power indicating 147

possible problem in the module. 148

During MPP determination and EL tests, the electrical wires, 149

connections, as well as the junction box or bypass diodes were 150

also investigated to certify that they are undamaged and correctly 151

operating. 152

C. MST16 Dielectric Withstand Test 153

This test is carried on at ambient temperature, according to 154

the standard IEC 61730-2 [20], and at relative humidity not ex- 155

ceeding 75%. The module passes the test if there is no evidence 156

of dielectric breakdown, or surface tracking, when a voltage 157

equal to 2000 V plus four times the maximum voltage system 158

is applied. 159

D. Wet Leakage Current Test 160

In agreement with the standards IEC 61215 [19] and IEC 161

61646 [21], the sample passes the test if the measured insulation 162

resistance multiplied by the area of the module shall not be below 163

40 MΩ·m2 (for modules with an area higher than 0.1 m2). 164
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TABLE I
OBTAINED RESULTS BY VISUAL INSPECTION AND MAXIMUM POWER DETERMINATION

E. Electroluminescence Test165

The EL test is a qualitative test used, in particular, for detect-166

ing microcracks in PV modules. The affected areas are darker167

as they emit low or do not generate light emission. Thus, micro-168

cracks that are not visible, as well as broken contact fingers, can169

be identified. Sometimes, this test cannot be applicable (N/A)170

due to connection problems within the modules. In addition, for171

cracks not affecting the entire cell, future issues can be esti-172

mated if the module is further stressed (i.e., cracks electrically173

separating the major part of the cell) [1], [13], [14].174

F. Energy Test175

Four PV modules chosen among the ones with the lowest176

EFF were then analyzed under actual environmental conditions177

at the SolarTechLAB [18]. The irradiance availability in the site178

is calculated in terms of daily reference yield (Yr,d ). The energy179

produced by these PV modules was evaluated in terms of daily180

final yield index (Yf,d ) [22] and relative daily final yield (RYf,d ).181

In agreement with the IEC 61724 [23], the daily reference182

yield Yr,d represents the number of peak sun-hours and is cal-183

culated as the global horizontal irradiance (GHI) in a day (kW184

h/m2) divided by the reference irradiance (1 kW/m2):185

Yr,d =
GHId(kWh/m2)

1(kW/m2)
. (2)

The index Yf,d is the energy output of the system divided by 186

the peak power of the installed PV array at STC: 187

Yf,d =
Eout,d(kWh)

PN (kW)
. (3)

The relative daily final yield is defined as the ratio between 188

the final yield Yf,d of the PV modules under investigation, and 189

the final yield Yf,dREF of reference PV module: 190

RYf,d =
Yf,d

Yf,dREF
· 100. (4)

III. INDOOR EXPERIMENTAL TESTS RESULTS 191

The obtained results of the visual inspection and maximum 192

power determination tests are summarized in Table I (the color 193

label represents the difference between the PV module maxi- 194

mum power and the datasheet value: green indicates a positive 195

or slight difference while red the highest power reduction). The 196

PV modules #1 – #15 did not show significant visual defects. 197

Indeed, no variation of maximum power of PV modules was 198

measured, but for modules #1 and #7 which show a power re- 199

duction of about 33%. A further analysis related this reduction 200

to some defects in the junction box connections, where one third 201

of the module is disconnected and does not generate energy. The 202

PV modules #16 – #31 had several snail trails deeply analyzed 203

by EL tests with some fingers blackened in all the modules. 204

Every module with discoloration due to snail trails has an MPP 205
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Fig. 2. Measured I–V curves of PV modules without major visual defects (#8)
and with several snail trails (#18).

Fig. 3. MPP of the PV modules under analysis (except the one affected by
diode failure) measured at STC in comparison with datasheet value (100%).

value below the nominal power; the reduction ranges from −9%206

to −27% with respect to the nominal power available from the207

datasheet.1 In particular, a decay of the current at MPP can208

be outlined, while the ISC and voltages are only marginally209

affected.210

In Fig. 2, the measured I–V curves of two PV modules #8 and211

#18 are reported. The two curves show significant differences212

in the MPP, as well as resistance values: the shunt and series213

resistances in the equivalent electric circuit derived for the PV214

module #8 are 332.8 Ω, respectively, 0.4 Ω. For the PV module215

#18, the shunt resistance reduces to 23.6 Ω and the series resis-216

tance increases to 0.8 Ω. This is in agreement with the results217

reported in [17]. The same trend was outlined also for all the218

other modules affected by microcracks, but the graphs are not219

reported here for the sake of brevity.220

Fig. 3 summarizes the voltage and current at MPP referred221

to the values indicated on the datasheet of the PV module.222

1Some discrepancies occur between PM PP reduction determined in this
paper and in [17]. This may be due to the different adopted instrumentation, as
well as test conditions (outdoor versus indoor).

Fig. 4. EL image of PV modules #14.

The dashed lines are percentages of the maximum power. The 223

modules not affected by snail trails are between or close to the 224

blue-dashed lines, which represent the nominal power output 225

±3% of tolerance. Modules with snail trails have power output 226

ranging from 75% to 90% of the nominal ones, which is mainly 227

due to current density reduction. 228

In addition, all PV modules complied with the dielectric with- 229

stand test and wet leakage current test. Thus, there are no major 230

anomalies in the electrical insulation of investigated PV mod- 231

ules, in dry and humid environment. 232

The last indoor test was the EL which was performed on all 233

the modules. As a term of comparison, the EL image of a PV 234

module without visual defects (#14) is reported in Fig. 4. 235

Among the 16 modules affected by snail trails, four among 236

the ones with the lowest EFF were selected for the energy test 237

at SolarTechLab. The selected modules are #17, #18, #23, and 238

#24 whose EL results are reported in Fig. 3, together with their 239

visual imagery. Black areas in EL images represent electrically 240

separated sections. The positions of cell are indicated in terms of 241

coordinate (row, column) within the PV module, e.g., position 242

(1,1) is on the left, top. 243

Starting from PV module #17, several snail trails are visible, 244

e.g., in positions (3,1), (4,1), and (5,1). Furthermore, cracks 245

are distinguishable in some cells located in positions (6,3) and 246

(10,2). In addition, poor finger contacts are visible [see cell 247

(5,4)]. Same considerations can be extended to the module #18 248

and #24, where snail trails are visible in cells (2,1), (2,2), and 249

(3,3) in #18, while in #24, they are located in positions from 250

(1,2) to (6,2). In addition, in these cases, poor finger contacts 251

are present in cell (4,4) and position (6,1) and (7,1) in #18 and 252

in #24, respectively. 253

In the case of PV module #23, several snail trails are visible, 254

e.g., in position (1,5), (1,6), and (1,7); these correspond to elec- 255

trically separated areas in EL images. Furthermore, cracks are 256

distinguishable in some cells, e.g., in position (5,3). Again, poor 257

finger contacts are visible, e.g., on cell (5,4), and not uniformity 258

in light is present, e.g., on cells (7,4) and (5.3). For the module 259
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Fig. 5. EL image and picture of PV modules #17, #18, #23, and #24 starting from top-left.

Fig. 6. EL, thermal, and visual imagines of #23 PV-module from (7,1) to (9,3) cells.

#23, in addition to EL analysis which outlined the same issues260

of the previous models, a thermal image together with EL and261

visual images of cells from (7,1) to (9,3) cells are shown in262

Fig. 4. Comparing the three images, it is possible to identify a
Q2

263

link among visual defects, hot parts, and electrically separated264

areas.265

In conclusion, the visual inspection carried on for all ana-266

lyzed PV modules revealed the existence of various failures for267

16 of them (#16 to #31), definitely ascribable to the phenomena 268

known as “snail trails” on the PV modules under test. The EL 269

test reveals the strong correlation between the appearance of 270

snail trails and presence of damaged cells (microcracks) in PV 271

modules. In addition, based on the experimental tests regarding 272

determination of MPP, PV modules with significant cell break- 273

age have a power reduction by 26–27% calculated at STC with 274

respect to the manufacturer datasheet data. 275
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Fig. 7. Daily final yield of the PV modules #17, 18, 23, and 24 in the period
April 2015–August 2015 referred to the daily final yield of the reference PV
modules.

IV. ENERGY COMPARISON IN SOLARTECHLAB276

An experimental campaign to evaluate the impact of snail277

trails on the energy production by PV modules was carried out.278

The objective of this experimental analysis was to assess the en-279

ergy reduction due to snail trails and cell cracks phenomenon in280

some PV modules. MPP reduction is an indication about mod-281

ule performances at only one condition, while long-term energy282

analysis provides more insight about the status of the module283

affected by snail trails. In addition, the energy analysis is used to284

compare the module performance with previous results reported285

in [17]. The analysis focused on the total energy production over286

a period of four months.287

The four PV modules #17, #18, #23, and #24 were installed288

at SolarTechLab [18] together with a commercial PV module289

(REFPV) of the same technology used as a reference case. The290

difference in aging was taken into account according to the291

datasheet information of the PV modules.292

The continuous monitoring of the PV modules was con-293

ducted using the microinverter configuration adopted at the294

SolarTechLab. The inverters were previously characterized in295

terms of efficiency at different operating conditions, revealing a296

quite uniform behavior. Therefore, a possible performance re-297

duction of the analyzed plant could specifically be related to the298

PV module and not to the power conversion system.299

The energy produced by the PV modules in the period from300

April 2015 to August 2015 was recorded to quantify the in-301

fluence of snail trails/cracks in terms of daily and total energy302

within the conducted test period. The daily energy generation—303

in terms of final yield (Yf,d )—by PV modules referred to the304

final yield of REFPV module (Yf,dREF ) is summarized in Fig. 7.305

The energy generation of the REFPV module, in terms of equiv-306

alent hours at peak power, is the black-dashed line.307

The daily charts prove that the four PV modules affected by308

snail trails have a lower final yield (Yf,d ) between 68% and309

88% with respect to the REFPV module. Since the reduction is310

referred to a PV module installed in the laboratory, the decrease311

can be related to the snail trails phenomenon due to microcrack. 312

Hence, microcracks affect the PV performances by reducing the 313

electrical energy production. 314

Fig. 8 illustrates the variation of relative daily final yield in- 315

dex (RYf,d) for the four affected PV modules (#17, #18, #23, 316

and #24) for each measured day. As illustrated in Fig. 8, the 317

performance decay is higher during high solar radiation days 318

characterized by high Yr,d . Table II summarizes the final yield 319

and relative final yield for the different months and the entire 320

period of analysis. It is important to underline that the numbers 321

of days in which the data are available are different for each 322

month. PV modules #17 and #18 presents the highest reduction 323

in energy production by about 30% than the REFPV module. 324

Modules #23 and #24 show a lower energy reduction: they pro- 325

duce about 20% less in term of energy than the REFPV. These 326

results are similar to the ones obtained by the maximum power 327

tests. Besides diverse measurement accuracies and references 328

adopted (REFPV instead of datasheet), the energy analysis rep- 329

resent the average behavior of the module under real operating 330

conditions, which can differ from the ones at MPP. The energy 331

results outline that the average behavior cannot be easily pre- 332

dicted: two modules (#17 and #18) have an energy reduction 333

higher than the one at MPP, while the opposite occurs for #23 334

and #24. 335

Finally, the indoor measurements are carried out at STC, 336

while the outdoor measurements are made under real conditions 337

and, hence, affected by variable weather. 338

V. LONG-TERM BEHAVIOR OF SNAIL TRAILS 339

An additional comparison in terms of energy production and 340

visual analysis between previous [17] and this work is carried 341

out to assess the long-term reliability of PV modules affected by 342

snail trails. The four PV modules under analysis in the period in 343

between operated for a total in-plane solar insolation of about 344

2000 kWh/m2; hence, they suffered aging by actual weather 345

conditions (sun UV, rain, snowfalls, etc.). 346

Table III summarizes the energy production results in terms 347

of RYF index obtained in the two campaigns. No significant 348

deviation in the behavior of the PV modules can be outlined. 349

The small differences can be due to different duration of the 350

measurement campaigns and to diverse weather conditions. 351

Furthermore, a comparison in terms of visual images was 352

performed. The PV cell visual inspection outlined only minor 353

variations from 2013 to 2015. In general, only one or two cells 354

in each PV module showed new snail trails, affecting a very 355

limited area of the PV cell. This can be seen in Fig. 9, where 356

in 2015, a small defect, which was not present in 2013, has 357

appeared in the bottom right area of the PV cell. 358

Moreover, only in a few cells of each module, a variation of 359

the fingers close to the snail trails was observed moving from 360

case a to case b. 361

1) Case a: Fingers are not interrupted, and there is only a 362

color variation from metallic gray to black [see Fig. 10(a)]. 363

2) Case b: Fingers look broken, and small metal agglomer- 364

ates with spherical shape are present in the center of the 365

finger [see Fig. 10(b)]. 366
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Fig. 8. Relative daily final yield index of the four PV affected modules #17, #18, #23, and #24 for 80 days in the period of analysis. The daily reference yield
index for the same days has been reported on the secondarary y-axes.

TABLE II
MOTHLY AND TOTAL FINAL YIELD INDEX (Yf ,m ) AND RELATIVE FINAL YIELD INDEX (RYf ,m ) OF THE #17, #18, #23, AND #24 PV MODULES AND THE

REFERENCE MODULE

REFPV #17 #18 #23 #24

Month Number of
considered

days

Solar
irradiance
(Wh/m2)

Yf , m (h) Yf , m (h) RYf , m Yf , m (h) RYf , m Yf , m (h) RYf , m Yf , m (h) RYf , m

April 9 50.11 48.47 33.82 69.8% 33.96 70.1% 38.41 79.2% 39.31 81.1%
May 25 147.79 130.66 92.94 71.1% 92.43 70.7% 103.75 79.4% 107.59 82.3%
June 14 100.52 84.15 59.93 71.2% 59.52 70.7% 66.16 78.6% 70.12 83.3%
July 13 89.66 75.28 55.27 73.4% 53.38 70.9% 59.73 79.3% 62.72 83.3%
August 19 97.96 85.85 64.41 75.0% 62.77 73.1% 68.57 79.9% 72.22 84.1%
TOTAL 80 486.05 424.42 306.37 72.2% 302.05 71.2% 336.62 79.3% 351.96 82.9%

TABLE III
RELATIVE FINAL YIELD INDEX (RYf ) OF THE FOUR PV MODULES AFFECTED

BY SNAIL TRAILS PHENOMENA FOR THE OLD AND NEW

OUTDOOR MEASUREMENTS

PV Module RYf [17]a August 2013 RYf April–August 2015

#17 68% 72%
#18 71% 71%
#23 77% 79%
#24 84% 83%

A RYF was not adopted in [17]; hence, it was calculated starting from
published numbers.

Fig. 9. Comparison among the state of the same PV cell. (a) year 2013 and
(b) year 2015.

Fig. 10. Status of the fingers under the snail trails. (a) Year 2013 and (b) year
2015.

There is no clear explanation of this snail trail evolution. 367

Over the two-year period, no further decrease of performance 368

was observed, and only very minor evolution of new grid fin- 369

ger discoloration occurred. A localized hot spot caused by the 370

high current density near the cracks in the PV cell can be the 371

justification. Over time, the initial damage that looks like a burn 372

evolves to a localized fusion of the metallic material, leading 373

to a permanent damage of the cell and of the encapsulant. A 374

microscopic change of “old” discoloration represents a reason 375

that has to be investigated further. 376

Finally, it can be stated that snail trails are developing only 377

at the beginning of outdoor operation and have no measureable 378

long-term impact, which confirms the conclusions of [16]. 379



IEE
E P

ro
of

8 IEEE JOURNAL OF PHOTOVOLTAICS

VI. CONCLUSION380

The analysis of PV modules degradation during their op-381

eration period is highly important for evaluating their perfor-382

mances. Several defect phenomena can appear immediately af-383

ter installation and during their operation lifetime. Among these384

degradation effects, the snail trails and microcracks occurring385

in PV systems within several months after the installation are386

highly impacting the PV performances.387

In this study, several tests were carried out to analyze some388

modules affected by snail trails phenomena. Tests such as the389

visual inspection, maximum power determination, dielectric390

withstand, and wet leakage current tests were carried out in a391

real-practice facility in Italy. MPP determination indicated a re-392

duction by 10–30% with respect to datasheet figures. The indoor393

EL test showed a strong correlation between the occurrence of394

snail trail phenomenon and microcrack in PV cells: Snail trails395

indicate the presence of cell cracks.396

Afterward, energy production tests were applied to four PV397

modules, by comparing their energy production with the one398

of a commercial PV modules used as reference, for the period399

April–August 2015. The obtained results highlight that the cell400

cracks can reduce the energy production of PV modules by 29%401

with respect to the reference PV module. The performance loss402

is correlated with the amount of cell cracks.403

Finally, a comparison with the results obtained in a previous404

work was carried out to outline the long-term behavior of snail405

trails. Energy measurements and visual inspection showed lim-406

ited evolution of the snail trails and, consequently, no significant407

variation in terms of power losses.408
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Abstract—This paper analyzes the impact of the snail trail phe-5
nomena on photovoltaic (PV) module performances and energy6
production. Several tests (visual inspection, maximum power de-7
termination, dielectric withstand, wet leakage current, and elec-8
troluminescence test) were carried out on 31 PV modules located9
in a PV plant in Italy. The electroluminescence test highlighted the10
strong correlation between the appearance of snail trails and pres-11
ence of damaged cells in PV modules. The daily energy produced12
by four PV modules affected by snail trails ranged between 68%13
and 88% of the energy produced by a damage free commercial PV14
module over the same period.

Q1
15

Index Terms—Electroluminescence (EL), microcracks, photo-16
voltaic (PV) modules, PV system reliability, snail trail phenomena.17

I. INTRODUCTION18

THE direct use of solar energy for electrical energy pro-19

duction faced an intense development due to ongoing CO220

emission reduction policies and the significant technical de-21

velopments of photovoltaic (PV) technology. In addition, over22

the past decade, the cost production of PV cells has dropped,23

making electricity costs closer to conventional fuel costs. This24

development requires detailed evaluation of PV performances25

over lifetime to identify potential degradation phenomena [1].26

Examples of degradation phenomena occurring in operating27

PV systems are encapsulant browning, delamination and bub-28

ble formation in the encapsulant, back sheet polymer cracks,29

front surface soiling, blackening at the bottom edge of the mod-30

ule, junction box connections corrosion, busbar oxidation and31

discoloration, junction cables insulation degradation, and glass32

breakage [2]–[4].33

Among these, over the past few years, the “snail trails” (also34

known as worm marks or snail tracks) have been increasingly35

occurring in PV systems within few months after the installation.36

These effects appear on the front side or the edge of the solar37

cells [5], [6], such as a small narrow dark line and discoloration38

on the surface of the cell, [7], [8].39
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In previous works, the correlation between snail trail dis- 40

colorations within the cells and cell microcracks was demon- 41

strated. Meyer et al. performed chemical tests, Fourier transform 42

infrared investigations, and X-ray photoelectron spectroscopy 43

measurements on PV modules for snail trail defect analysis. 44

Snail trails were correlated with chemical reactions occurring 45

between silver of grid fingers and air humidity [5], [8]–[12]. 46

Köntges et al. used fluorescence radiation to investigate mi- 47

cro cracks in PV cells, in order to determine the number, the 48

position/orientation, and the frequency [13], [14]. Studies were 49

further carried out in [15], simulating the PV module power 50

affected by different crack types. The authors estimated that 51

cracks isolate a cell section leading to a module strings power 52

loss around 6–22%. They also suggested that the replacement of 53

the most damaged module in a string allows a power recovery 54

lower than the nominal power of a new module. 55

In [16], experiments to evaluate the impact of discolored lines 56

like snail trails were performed both in laboratory and outdoor 57

field, together with aging tests. A power reduction exceeding 58

5% was measured, and it was related to cell microcrack before 59

snail trail formation. 60

This paper is a follow-up of a previous work [17] and investi- 61

gates the performance of 31 PV modules under operation in a PV 62

plant in Italy. The modules considered in this paper include also 63

the four PV modules monitored in [17], where outdoor experi- 64

ments on PV panels affected by snail trails outlined a reduction 65

1) in the photogenerated current, 2) of the shunt resistance in 66

the electric equivalent circuit, and 3) of the energy production 67

by 35%. Due to absence of some tests, no ultimate conclusions 68

on the correlation between the snail trails phenomena and cells 69

microcrack could be extended. 70

In this paper, several additional analyses were performed to 71

highlight eventual issues besides visual defects as discoloration. 72

The analyses are indoor visual inspection, maximum power de- 73

termination, MST16 dielectric withstand, and wet leakage cur- 74

rent. An important test carried out was the electroluminescence 75

(EL) one, which allows correlating inactive (“broken”) cell area 76

and the level of performance loss. After the initial screening, 77

the same modules considered in [17] were evaluated with long 78

outdoor testing lasting five months 1) to compare the power and 79

energy performances after two additional years of operation and 80

2) to assess the long-term behavior of cell cracks or snail trails 81

under real operating conditions. The long-term observation of 82

modules with grid finger discoloration is really a new contribu- 83

tion to this work, which, to the knowledge of the authors, was 84

not previously investigated. 85

The experimental measurements were carried out at 86

SolarTechLAB [18], Politecnico di Milano, Italy. 87

2156-3381 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Experimental procedure flowchart.

The paper is organized as follows: Section II describes the88

experimental procedures and the conducted tests. Section III89

reports the indoor experimental results, while Section IV reveals90

the energy experimental results for assessing snail trails effects91

on PV performances. In Section V, a comparison between the92

old and new outdoor measurements is presented. Section VI93

reports the final conclusions and the discussion of obtained94

results.95

II. EXPERIMENTAL PROCEDURE96

The modules considered in this study were taken from a PV97

plant in operation. Among 4000 PV modules installed, 31 were98

selected by visual inspection: 16 modules affected by the snail99

trails at different rates and 15 with no trace of degradation.100

As mentioned in [17], all the modules were manufactured in101

2011 and have been operating since early 2012. Before their102

installation, each module performance was measured revealing103

good agreement with the corresponding datasheet, and no snail104

trail phenomenon or other issues were identified. After less than105

six months, these PV modules started to report a performance106

decay correlated with snail trail formation, since neither dam-107

ages nor artificial breakage occurred. Performance decay was108

first evaluated in 2013 and, then, in 2015. During 2013–2015,109

the PV modules were in operation.110

A multistep procedure (summarized in Fig. 1) was defined111

to assess the status and performances of the 31 modules. The112

procedure can be divided into two phases: the first one, named113

indoor tests, was carried out for all the modules, and the second114

one, named outdoor tests, for a limited number of modules. The115

following analyses were carried out.116

A. Visual Inspection Tests 117

Visual inspection tests have been performed as defined by 118

IEC 61215 [19]. For the purposes of design qualification and 119

type approval, major visual defects were considered to be the 120

following: 121

1) broken, cracked, or torn external surfaces, including su- 122

perstrates, substrates, frames, and junction boxes; 123

2) bent or misaligned external surfaces, including super- 124

strates, substrates, frames, and junction boxes to the extent 125

that the installation and/or operation of the module would 126

be impaired; 127

3) cracks, bubbles, or delaminations forming a continuous 128

path between any part of the electrical circuit and the 129

edge of the module; 130

4) loss of mechanical integrity, to the extent that the instal- 131

lation and/or operation of the module would be impaired. 132

B. Maximum Power Determination 133

The I–V characteristic curves were traced at standard test 134

conditions (STC) in a sun simulator chamber of class AAA and 135

I–V curve generator as defined by IEC 61215 [19]. The obtained 136

results, at STC, were the following: 137

1) the open-circuit voltage VOC ; 138

2) the voltage at maximum power point (MPP) VMPP ; 139

3) the short-circuit current ISC ; 140

4) the current at MPP IMPP ; 141

5) the power at MPP PMPP . 142

Using the maximum power value, the power variation (EFF) 143

with respect to the nominal power value (i.e., indicated in the 144

PV module datasheet) was calculated as follows: 145

EFF =
PMPP − PN

PN
· 100. (1)

A negative value of EFF means a reduction in the power pro- 146

duction with respect to the datasheet nominal power indicating 147

possible problem in the module. 148

During MPP determination and EL tests, the electrical wires, 149

connections, as well as the junction box or bypass diodes were 150

also investigated to certify that they are undamaged and correctly 151

operating. 152

C. MST16 Dielectric Withstand Test 153

This test is carried on at ambient temperature, according to 154

the standard IEC 61730-2 [20], and at relative humidity not ex- 155

ceeding 75%. The module passes the test if there is no evidence 156

of dielectric breakdown, or surface tracking, when a voltage 157

equal to 2000 V plus four times the maximum voltage system 158

is applied. 159

D. Wet Leakage Current Test 160

In agreement with the standards IEC 61215 [19] and IEC 161

61646 [21], the sample passes the test if the measured insulation 162

resistance multiplied by the area of the module shall not be below 163

40 MΩ·m2 (for modules with an area higher than 0.1 m2). 164
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TABLE I
OBTAINED RESULTS BY VISUAL INSPECTION AND MAXIMUM POWER DETERMINATION

E. Electroluminescence Test165

The EL test is a qualitative test used, in particular, for detect-166

ing microcracks in PV modules. The affected areas are darker167

as they emit low or do not generate light emission. Thus, micro-168

cracks that are not visible, as well as broken contact fingers, can169

be identified. Sometimes, this test cannot be applicable (N/A)170

due to connection problems within the modules. In addition, for171

cracks not affecting the entire cell, future issues can be esti-172

mated if the module is further stressed (i.e., cracks electrically173

separating the major part of the cell) [1], [13], [14].174

F. Energy Test175

Four PV modules chosen among the ones with the lowest176

EFF were then analyzed under actual environmental conditions177

at the SolarTechLAB [18]. The irradiance availability in the site178

is calculated in terms of daily reference yield (Yr,d ). The energy179

produced by these PV modules was evaluated in terms of daily180

final yield index (Yf,d ) [22] and relative daily final yield (RYf,d ).181

In agreement with the IEC 61724 [23], the daily reference182

yield Yr,d represents the number of peak sun-hours and is cal-183

culated as the global horizontal irradiance (GHI) in a day (kW184

h/m2) divided by the reference irradiance (1 kW/m2):185

Yr,d =
GHId(kWh/m2)

1(kW/m2)
. (2)

The index Yf,d is the energy output of the system divided by 186

the peak power of the installed PV array at STC: 187

Yf,d =
Eout,d(kWh)

PN (kW)
. (3)

The relative daily final yield is defined as the ratio between 188

the final yield Yf,d of the PV modules under investigation, and 189

the final yield Yf,dREF of reference PV module: 190

RYf,d =
Yf,d

Yf,dREF
· 100. (4)

III. INDOOR EXPERIMENTAL TESTS RESULTS 191

The obtained results of the visual inspection and maximum 192

power determination tests are summarized in Table I (the color 193

label represents the difference between the PV module maxi- 194

mum power and the datasheet value: green indicates a positive 195

or slight difference while red the highest power reduction). The 196

PV modules #1 – #15 did not show significant visual defects. 197

Indeed, no variation of maximum power of PV modules was 198

measured, but for modules #1 and #7 which show a power re- 199

duction of about 33%. A further analysis related this reduction 200

to some defects in the junction box connections, where one third 201

of the module is disconnected and does not generate energy. The 202

PV modules #16 – #31 had several snail trails deeply analyzed 203

by EL tests with some fingers blackened in all the modules. 204

Every module with discoloration due to snail trails has an MPP 205
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Fig. 2. Measured I–V curves of PV modules without major visual defects (#8)
and with several snail trails (#18).

Fig. 3. MPP of the PV modules under analysis (except the one affected by
diode failure) measured at STC in comparison with datasheet value (100%).

value below the nominal power; the reduction ranges from −9%206

to −27% with respect to the nominal power available from the207

datasheet.1 In particular, a decay of the current at MPP can208

be outlined, while the ISC and voltages are only marginally209

affected.210

In Fig. 2, the measured I–V curves of two PV modules #8 and211

#18 are reported. The two curves show significant differences212

in the MPP, as well as resistance values: the shunt and series213

resistances in the equivalent electric circuit derived for the PV214

module #8 are 332.8 Ω, respectively, 0.4 Ω. For the PV module215

#18, the shunt resistance reduces to 23.6 Ω and the series resis-216

tance increases to 0.8 Ω. This is in agreement with the results217

reported in [17]. The same trend was outlined also for all the218

other modules affected by microcracks, but the graphs are not219

reported here for the sake of brevity.220

Fig. 3 summarizes the voltage and current at MPP referred221

to the values indicated on the datasheet of the PV module.222

1Some discrepancies occur between PM PP reduction determined in this
paper and in [17]. This may be due to the different adopted instrumentation, as
well as test conditions (outdoor versus indoor).

Fig. 4. EL image of PV modules #14.

The dashed lines are percentages of the maximum power. The 223

modules not affected by snail trails are between or close to the 224

blue-dashed lines, which represent the nominal power output 225

±3% of tolerance. Modules with snail trails have power output 226

ranging from 75% to 90% of the nominal ones, which is mainly 227

due to current density reduction. 228

In addition, all PV modules complied with the dielectric with- 229

stand test and wet leakage current test. Thus, there are no major 230

anomalies in the electrical insulation of investigated PV mod- 231

ules, in dry and humid environment. 232

The last indoor test was the EL which was performed on all 233

the modules. As a term of comparison, the EL image of a PV 234

module without visual defects (#14) is reported in Fig. 4. 235

Among the 16 modules affected by snail trails, four among 236

the ones with the lowest EFF were selected for the energy test 237

at SolarTechLab. The selected modules are #17, #18, #23, and 238

#24 whose EL results are reported in Fig. 3, together with their 239

visual imagery. Black areas in EL images represent electrically 240

separated sections. The positions of cell are indicated in terms of 241

coordinate (row, column) within the PV module, e.g., position 242

(1,1) is on the left, top. 243

Starting from PV module #17, several snail trails are visible, 244

e.g., in positions (3,1), (4,1), and (5,1). Furthermore, cracks 245

are distinguishable in some cells located in positions (6,3) and 246

(10,2). In addition, poor finger contacts are visible [see cell 247

(5,4)]. Same considerations can be extended to the module #18 248

and #24, where snail trails are visible in cells (2,1), (2,2), and 249

(3,3) in #18, while in #24, they are located in positions from 250

(1,2) to (6,2). In addition, in these cases, poor finger contacts 251

are present in cell (4,4) and position (6,1) and (7,1) in #18 and 252

in #24, respectively. 253

In the case of PV module #23, several snail trails are visible, 254

e.g., in position (1,5), (1,6), and (1,7); these correspond to elec- 255

trically separated areas in EL images. Furthermore, cracks are 256

distinguishable in some cells, e.g., in position (5,3). Again, poor 257

finger contacts are visible, e.g., on cell (5,4), and not uniformity 258

in light is present, e.g., on cells (7,4) and (5.3). For the module 259
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Fig. 5. EL image and picture of PV modules #17, #18, #23, and #24 starting from top-left.

Fig. 6. EL, thermal, and visual imagines of #23 PV-module from (7,1) to (9,3) cells.

#23, in addition to EL analysis which outlined the same issues260

of the previous models, a thermal image together with EL and261

visual images of cells from (7,1) to (9,3) cells are shown in262

Fig. 4. Comparing the three images, it is possible to identify a
Q2

263

link among visual defects, hot parts, and electrically separated264

areas.265

In conclusion, the visual inspection carried on for all ana-266

lyzed PV modules revealed the existence of various failures for267

16 of them (#16 to #31), definitely ascribable to the phenomena 268

known as “snail trails” on the PV modules under test. The EL 269

test reveals the strong correlation between the appearance of 270

snail trails and presence of damaged cells (microcracks) in PV 271

modules. In addition, based on the experimental tests regarding 272

determination of MPP, PV modules with significant cell break- 273

age have a power reduction by 26–27% calculated at STC with 274

respect to the manufacturer datasheet data. 275
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Fig. 7. Daily final yield of the PV modules #17, 18, 23, and 24 in the period
April 2015–August 2015 referred to the daily final yield of the reference PV
modules.

IV. ENERGY COMPARISON IN SOLARTECHLAB276

An experimental campaign to evaluate the impact of snail277

trails on the energy production by PV modules was carried out.278

The objective of this experimental analysis was to assess the en-279

ergy reduction due to snail trails and cell cracks phenomenon in280

some PV modules. MPP reduction is an indication about mod-281

ule performances at only one condition, while long-term energy282

analysis provides more insight about the status of the module283

affected by snail trails. In addition, the energy analysis is used to284

compare the module performance with previous results reported285

in [17]. The analysis focused on the total energy production over286

a period of four months.287

The four PV modules #17, #18, #23, and #24 were installed288

at SolarTechLab [18] together with a commercial PV module289

(REFPV) of the same technology used as a reference case. The290

difference in aging was taken into account according to the291

datasheet information of the PV modules.292

The continuous monitoring of the PV modules was con-293

ducted using the microinverter configuration adopted at the294

SolarTechLab. The inverters were previously characterized in295

terms of efficiency at different operating conditions, revealing a296

quite uniform behavior. Therefore, a possible performance re-297

duction of the analyzed plant could specifically be related to the298

PV module and not to the power conversion system.299

The energy produced by the PV modules in the period from300

April 2015 to August 2015 was recorded to quantify the in-301

fluence of snail trails/cracks in terms of daily and total energy302

within the conducted test period. The daily energy generation—303

in terms of final yield (Yf,d )—by PV modules referred to the304

final yield of REFPV module (Yf,dREF ) is summarized in Fig. 7.305

The energy generation of the REFPV module, in terms of equiv-306

alent hours at peak power, is the black-dashed line.307

The daily charts prove that the four PV modules affected by308

snail trails have a lower final yield (Yf,d ) between 68% and309

88% with respect to the REFPV module. Since the reduction is310

referred to a PV module installed in the laboratory, the decrease311

can be related to the snail trails phenomenon due to microcrack. 312

Hence, microcracks affect the PV performances by reducing the 313

electrical energy production. 314

Fig. 8 illustrates the variation of relative daily final yield in- 315

dex (RYf,d) for the four affected PV modules (#17, #18, #23, 316

and #24) for each measured day. As illustrated in Fig. 8, the 317

performance decay is higher during high solar radiation days 318

characterized by high Yr,d . Table II summarizes the final yield 319

and relative final yield for the different months and the entire 320

period of analysis. It is important to underline that the numbers 321

of days in which the data are available are different for each 322

month. PV modules #17 and #18 presents the highest reduction 323

in energy production by about 30% than the REFPV module. 324

Modules #23 and #24 show a lower energy reduction: they pro- 325

duce about 20% less in term of energy than the REFPV. These 326

results are similar to the ones obtained by the maximum power 327

tests. Besides diverse measurement accuracies and references 328

adopted (REFPV instead of datasheet), the energy analysis rep- 329

resent the average behavior of the module under real operating 330

conditions, which can differ from the ones at MPP. The energy 331

results outline that the average behavior cannot be easily pre- 332

dicted: two modules (#17 and #18) have an energy reduction 333

higher than the one at MPP, while the opposite occurs for #23 334

and #24. 335

Finally, the indoor measurements are carried out at STC, 336

while the outdoor measurements are made under real conditions 337

and, hence, affected by variable weather. 338

V. LONG-TERM BEHAVIOR OF SNAIL TRAILS 339

An additional comparison in terms of energy production and 340

visual analysis between previous [17] and this work is carried 341

out to assess the long-term reliability of PV modules affected by 342

snail trails. The four PV modules under analysis in the period in 343

between operated for a total in-plane solar insolation of about 344

2000 kWh/m2; hence, they suffered aging by actual weather 345

conditions (sun UV, rain, snowfalls, etc.). 346

Table III summarizes the energy production results in terms 347

of RYF index obtained in the two campaigns. No significant 348

deviation in the behavior of the PV modules can be outlined. 349

The small differences can be due to different duration of the 350

measurement campaigns and to diverse weather conditions. 351

Furthermore, a comparison in terms of visual images was 352

performed. The PV cell visual inspection outlined only minor 353

variations from 2013 to 2015. In general, only one or two cells 354

in each PV module showed new snail trails, affecting a very 355

limited area of the PV cell. This can be seen in Fig. 9, where 356

in 2015, a small defect, which was not present in 2013, has 357

appeared in the bottom right area of the PV cell. 358

Moreover, only in a few cells of each module, a variation of 359

the fingers close to the snail trails was observed moving from 360

case a to case b. 361

1) Case a: Fingers are not interrupted, and there is only a 362

color variation from metallic gray to black [see Fig. 10(a)]. 363

2) Case b: Fingers look broken, and small metal agglomer- 364

ates with spherical shape are present in the center of the 365

finger [see Fig. 10(b)]. 366
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Fig. 8. Relative daily final yield index of the four PV affected modules #17, #18, #23, and #24 for 80 days in the period of analysis. The daily reference yield
index for the same days has been reported on the secondarary y-axes.

TABLE II
MOTHLY AND TOTAL FINAL YIELD INDEX (Yf ,m ) AND RELATIVE FINAL YIELD INDEX (RYf ,m ) OF THE #17, #18, #23, AND #24 PV MODULES AND THE

REFERENCE MODULE

REFPV #17 #18 #23 #24

Month Number of
considered

days

Solar
irradiance
(Wh/m2)

Yf , m (h) Yf , m (h) RYf , m Yf , m (h) RYf , m Yf , m (h) RYf , m Yf , m (h) RYf , m

April 9 50.11 48.47 33.82 69.8% 33.96 70.1% 38.41 79.2% 39.31 81.1%
May 25 147.79 130.66 92.94 71.1% 92.43 70.7% 103.75 79.4% 107.59 82.3%
June 14 100.52 84.15 59.93 71.2% 59.52 70.7% 66.16 78.6% 70.12 83.3%
July 13 89.66 75.28 55.27 73.4% 53.38 70.9% 59.73 79.3% 62.72 83.3%
August 19 97.96 85.85 64.41 75.0% 62.77 73.1% 68.57 79.9% 72.22 84.1%
TOTAL 80 486.05 424.42 306.37 72.2% 302.05 71.2% 336.62 79.3% 351.96 82.9%

TABLE III
RELATIVE FINAL YIELD INDEX (RYf ) OF THE FOUR PV MODULES AFFECTED

BY SNAIL TRAILS PHENOMENA FOR THE OLD AND NEW

OUTDOOR MEASUREMENTS

PV Module RYf [17]a August 2013 RYf April–August 2015

#17 68% 72%
#18 71% 71%
#23 77% 79%
#24 84% 83%

A RYF was not adopted in [17]; hence, it was calculated starting from
published numbers.

Fig. 9. Comparison among the state of the same PV cell. (a) year 2013 and
(b) year 2015.

Fig. 10. Status of the fingers under the snail trails. (a) Year 2013 and (b) year
2015.

There is no clear explanation of this snail trail evolution. 367

Over the two-year period, no further decrease of performance 368

was observed, and only very minor evolution of new grid fin- 369

ger discoloration occurred. A localized hot spot caused by the 370

high current density near the cracks in the PV cell can be the 371

justification. Over time, the initial damage that looks like a burn 372

evolves to a localized fusion of the metallic material, leading 373

to a permanent damage of the cell and of the encapsulant. A 374

microscopic change of “old” discoloration represents a reason 375

that has to be investigated further. 376

Finally, it can be stated that snail trails are developing only 377

at the beginning of outdoor operation and have no measureable 378

long-term impact, which confirms the conclusions of [16]. 379
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VI. CONCLUSION380

The analysis of PV modules degradation during their op-381

eration period is highly important for evaluating their perfor-382

mances. Several defect phenomena can appear immediately af-383

ter installation and during their operation lifetime. Among these384

degradation effects, the snail trails and microcracks occurring385

in PV systems within several months after the installation are386

highly impacting the PV performances.387

In this study, several tests were carried out to analyze some388

modules affected by snail trails phenomena. Tests such as the389

visual inspection, maximum power determination, dielectric390

withstand, and wet leakage current tests were carried out in a391

real-practice facility in Italy. MPP determination indicated a re-392

duction by 10–30% with respect to datasheet figures. The indoor393

EL test showed a strong correlation between the occurrence of394

snail trail phenomenon and microcrack in PV cells: Snail trails395

indicate the presence of cell cracks.396

Afterward, energy production tests were applied to four PV397

modules, by comparing their energy production with the one398

of a commercial PV modules used as reference, for the period399

April–August 2015. The obtained results highlight that the cell400

cracks can reduce the energy production of PV modules by 29%401

with respect to the reference PV module. The performance loss402

is correlated with the amount of cell cracks.403

Finally, a comparison with the results obtained in a previous404

work was carried out to outline the long-term behavior of snail405

trails. Energy measurements and visual inspection showed lim-406

ited evolution of the snail trails and, consequently, no significant407

variation in terms of power losses.408
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[13] M. Köntges, S. Kajari-Schroder, and I. Kunze, “Crack statistic for 444
wafer based silicon solar cell modules in the field measured by 445
UV fluorescence,” IEEE J. Photovoltaics, vol. 3, no. 1, pp. 95–101, 446
Jan. 2013. 447

[14] J. Käsewieter, F. Haase, and M. Köntges, “Model of cracked solar cell 448
metallization leading to permanent module power loss,” IEEE J. Photo- 449
voltaics, vol. 5, no. 6, pp. 1735–1741, Nov. 2015. 450
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