48 research outputs found

    LRRK2 secretion in exosomes is regulated by 14-3-3

    Get PDF
    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinson's disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively secrete exosomes into urine. Purified urinary exosomes contain LRRK2 protein that is both dimerized and phosphorylated. We provide a quantitative proteomic profile of 1673 proteins in urinary exosomes and find that known LRRK2 interactors including 14-3-3 are some of the most abundant exosome proteins. Disruption of the 14-3-3 LRRK2 interaction with a 14-3-3 inhibitor or through acute LRRK2 kinase inhibition potently blocks LRRK2 release in exosomes, but familial mutations in LRRK2 had no effect on secretion. LRRK2 levels were overall comparable but highly variable in urinary exosomes derived from PD cases and age-matched controls, although very high LRRK2 levels were detected in some PD affected cases. We further characterized LRRK2 exosome release in neurons and macrophages in culture, and found that LRRK2-positive exosomes circulate in cerebral spinal fluid (CSF). Together, these results define a pathway for LRRK2 extracellular release, clarify one function of the LRRK2 14-3-3 interaction and provide a foundation for utilization of LRRK2 as a biomarker in clinical trial

    LRRK2 secretion in exosomes is regulated by 14-3-3

    Get PDF
    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinson's disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively secrete exosomes into urine. Purified urinary exosomes contain LRRK2 protein that is both dimerized and phosphorylated. We provide a quantitative proteomic profile of 1673 proteins in urinary exosomes and find that known LRRK2 interactors including 14-3-3 are some of the most abundant exosome proteins. Disruption of the 14-3-3 LRRK2 interaction with a 14-3-3 inhibitor or through acute LRRK2 kinase inhibition potently blocks LRRK2 release in exosomes, but familial mutations in LRRK2 had no effect on secretion. LRRK2 levels were overall comparable but highly variable in urinary exosomes derived from PD cases and age-matched controls, although very high LRRK2 levels were detected in some PD affected cases. We further characterized LRRK2 exosome release in neurons and macrophages in culture, and found that LRRK2-positive exosomes circulate in cerebral spinal fluid (CSF). Together, these results define a pathway for LRRK2 extracellular release, clarify one function of the LRRK2 14-3-3 interaction and provide a foundation for utilization of LRRK2 as a biomarker in clinical trials

    The Structure of P4 Procapsids Produced by Coexpression of Capsid and External Scaffolding Proteins

    Get PDF
    AbstractThe double-stranded DNA bacteriophage P4 has a T = 4 icosahedral arrangement of the gpN capsid protein derived from the P2 helper phage. The precursor procapsids in addition contain an external scaffold made up of the P4-encoded Sid protein. High yields of pure P4 procapsids have been obtained by coexpressing the gpN and Sid proteins from a chimeric plasmid. Biochemical measurements show that the ratio of gpN to Sid in the procapsids is 2:1, corresponding to 120 copies of Sid per procapsid particle. A reconstruction of the P4 procapsid, made from 213 particle images to an effective resolution of about 21 Ã…, greatly improves on the previously determined P4 procapsid structures. The structure shows a T = 4 capsid shell and a unique tandem arrangement of 120 copies of chilli-shaped Sid monomers, which form trimers and dimers on the procapsid surface

    Structure of the host cell recognition and penetration machinery of a Staphylococcus aureus bacteriophage

    No full text
    Staphylococcus aureus is a common cause of infections in humans. The emergence of virulent, antibiotic-resistant strains of S. aureus is a significant public health concern. Most virulence and resistance factors in S. aureus are encoded by mobile genetic elements, and transduction by bacteriophages represents the main mechanism for horizontal gene transfer. The baseplate is a specialized structure at the tip of bacteriophage tails that plays key roles in host recognition, cell wall penetration, and DNA ejection. We have used high-resolution cryo-electron microscopy to determine the structure of the S. aureus bacteriophage 80α baseplate at 3.75 Å resolution, allowing atomic models to be built for most of the major tail and baseplate proteins, including two tail fibers, the receptor binding protein, and part of the tape measure protein. Our structure provides a structural basis for understanding host recognition, cell wall penetration and DNA ejection in viruses infecting Gram-positive bacteria. Comparison to other phages demonstrates the modular design of baseplate proteins, and the adaptations to the host that take place during the evolution of staphylococci and other pathogens

    Cryo-electron Tomography of Porcine Reproductive and Respiratory Syndrome Virus: Organization of the Nucleocapsid

    No full text
    Porcine reproductive and respiratory virus (PRRSV) is an enveloped positive-sense RNA virus of the familyArteriviridae that causes severe and persistent disease in pigs worldwide. The PRRSV virion consists of a lipid envelope that contains several envelope proteins surrounding a nucleocapsid core that encapsidates the RNA genome. To provide a better understanding of the structure and assembly of PRRSV, we have carried out cryo-electron microscopy and tomographic reconstruction of virions grown in MARC-145 cells. The virions are pleomorphic, round to egg-shaped particles with an average diameter of 58 nm. The particles display a smooth outer surface with only a few protruding features, presumably corresponding to the envelope protein complexes. The virions contain a double-layered, hollow core with an average diameter of 39 nm, which is separated from the envelope by a 2–3 nm gap. Analysis of the three-dimensional structure suggests that the core is composed of a double-layered chain of nucleocapsid proteins bundled into a hollow ball

    A novel ejection protein from bacteriophage 80α that promotes lytic growth

    No full text
    Many staphylococcal bacteriophages encode a minor capsid protein between the genes for the portal and scaffolding proteins. In Staphylococcus aureus bacteriophage 80α, this protein, called gp44, is essential for the production of viable phage, but dispensable for the phage-mediated mobilization of S. aureus pathogenicity islands. We show here that gp44 is not required for capsid assembly, DNA packaging or ejection of the DNA, nor for generalized transduction of plasmids. An 80α Δ44 mutant could be complemented in trans by gp44 expressed from a plasmid, indicating that gp44 plays a post-injection role in the host. Our results show that gp44 is an ejection (pilot) protein that is involved in deciding the fate of the phage DNA after injection. Our data are consistent with a model in which gp44 acts as a regulatory protein that promotes progression to the lytic cycle

    Techniques in Microscopy for Biomedical Applications

    No full text
    The second volume of the series Manuals in Biomedical Research, this book is aimed to be both a concise introduction to the diverse field of microscopy and a practical guide those who require the use of microscopic for methods in their research. It provides young as well as experienced scientists a state-of-the-art multidisciplinary overview of microscopic techniques, covering all the major microscopy fields in biomedical sciences and showing their application in evaluating samples ranging from molecules to cells and tissues. Microscopy has revolutionized our understanding of biological events. Within the last two decades, microscopic techniques have provided insights into the dynamics of biological processes that regulate such events. Biological discovery, to a large extent, depends on advances in imaging techniques and various microscopic techniques have emerged as central and indispensable tools in the biomedical sciences. The four authors bring with them extensive experiences spanning across disciplines such as Microbiology, Molecular and Cell Biology, Tissue Engineering, Biomedical and Regenerative Medicine and so forth, reinforcing the fact that microscopy has proven useful in countless investigations into the mysteries of life.</p
    corecore