289 research outputs found

    Radiative Transfer in a Discrete Random Medium Adjacent to a Half-Space with a Rough Interface

    Get PDF
    For a macroscopically plane-parallel discrete random medium, the boundary conditions for the specific coherency dyadic at a rough interface are derived. The derivation is based on a modification of the Twersky approximation for a scattering system consisting of a group of particles and the rough surface, and reduces to the solution of the scattering problem for a rough surface illuminated by a plane electromagnetic wave propagating in a discrete random medium with non-scattering boundaries. In a matrix-form setting, the boundary conditions for the specific coherency dyadic imply the boundary conditions for specific intensity column vectors which in turn, yield the expressions for the reflection and transmission matrices. The derived expressions are shown to be identical to those obtained by applying a phenomenological approach based on a facet model to the solution of the scattering problem for a rough surface illuminated by a plane electromagnetic wave

    Numerical Modelling of Optical Trapping

    Get PDF
    Optical trapping is a widely used technique, with many important applications in biology and metrology. Complete modelling of trapping requires calculation of optical forces, primarily a scattering problem, and non-optical forces. The T-matrix method is used to calculate forces acting on spheroidal and cylindrical particles.Comment: 4 pages, 4 figure

    Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate

    Get PDF
    The optical properties of periodic arrays of plasmonic nanoantennas are strongly affected by coherent multiple scattering in the plane of the array, which leads to sharp spectral resonances in both transmission and reflection when the wavelength is commensurate with the period. We demonstrate that the presence of a substrate (i.e., an asymmetric refractive-index environment) can inhibit long-range coupling between the particles and suppress lattice resonances, in agreement with recent experimental results. We find the substrate-to-superstrate index contrast and the distance between the array and the interface to be critical parameters determining the strength of diffractive coupling. Our rigorous electromagnetic simulations are well reproduced by a simple analytical model. These findings are important in the design of periodic structures and in the assessment of their optical resonances for potential use in sensing and other photonic technologies

    Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations

    Get PDF
    Multipole expansions of Bessel and Gaussian beams, suitable for use in Mie scattering calculations, are derived. These results allow Mie scattering calculations to be carried out considerably faster than existing methods, something that is of particular interest for time evolution simulations where large numbers of scattering calculations must be performed. An analytic result is derived for the Bessel beam that improves on a previously published expression requiring the evaluation of an integral. An analogous expression containing a single integral, similar to existing results quoted, but not derived, in literature, is derived for a Gaussian beam,valid from the paraxial limit all the way to arbitrarily high numerical apertures

    Remote Sensing of Stratospheric Trace Gases by TELIS

    Get PDF
    TELIS (TErahertz and submillimeter LImb Sounder) is a balloon-borne cryogenic heterodyne spectrometer with two far infrared and submillimeter channels (1.8 THz and 480--650 GHz developed by DLR and SRON, respectively). The instrument was designed to investigate atmospheric chemistry and dynamics with a focus on the stratosphere. TELIS participated in three scientific campaigns in Kiruna, Sweden between 2009 and 2011. The recent campaign took place in 2014 over Ontario, Canada. During previous campaigns, TELIS shared a balloon gondola with MIPAS-B and mini-DOAS. The primary scientific goal of these campaigns has been to monitor the time-dependent chemistry of chlorine and bromine, and to achieve the closure of chemical families inside the polar vortex. In this work, we present retrieved profiles of ozone (O3), hydrogen chlorine (HCl), carbon monoxide (CO), and hydroxyl radical (OH) obtained by the 1.8 THz channel from the polar winter flights during 2009--2011. Furthermore, the corresponding retrieval algorithm is described. The quality of the retrieval products is analyzed in a quantitative manner including: error characterization, internal comparisons of the two different channels, and external comparisons with coincident spaceborne observations. The errors due to the instrument parameters and pressure dominate in the upper troposphere and lower stratosphere, while the errors at higher altitudes are mainly due to the spectroscopic parameters and the radiometric calibration. The comparisons with other limb sounders help us to assess the measurement capabilities of TELIS, thereby establishing the instrument as a valuable tool to study the chemical interactions in the stratosphere

    An overview of the null-field method. II: Convergence and numerical stability

    Get PDF
    n this paper we provide an analysis of the convergence and numerical stability of the null-field method with discrete sources. We show that (i) if the null-field scheme is numerically stable then we can decide whether or not convergence can be achieved; (ii) if the null-field scheme is numerically unstable then we cannot draw any conclusion about the convergence issue; and (iii) the numerical stability is closely related to the property of a tangential system of radiating discrete sources to form a Riesz basis. Our numerical analysis indicates that for prolate spheroids and localized vector spherical wave functions, the null-field scheme is numerically unstable (this system of vector functions does not form a Riesz basis), while for distributed vector spherical wave functions, the numerical instability is not so pronounced (this system of discrete sources almost possesses the property of being a Riesz basis).We also describe an analytical method for computing the surface integrals in the framework of the conventional null-field method with localized vector spherical wave functions which increases the stability of the numerical schem
    corecore