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Abstract

For a macroscopically plane-parallel discrete random medium, the
boundary conditions for the specific coherency dyadic at a rough interface
are derived. The derivation is based on a modification of the Twersky ap-
proximation for a scattering system consisting of a group of particles and
the rough surface, and reduces to the solution of the scattering problem
for a rough surface illuminated by a plane electromagnetic wave propa-
gating in a discrete random medium with non-scattering boundaries. In
a matrix-form setting, the boundary conditions for the specific coherency
dyadic imply the boundary conditions for specific intensity column vec-
tors which in turn, yield the expressions for the reflection and transmission
matrices. The derived expressions are shown to be identical to those ob-
tained by applying a phenomenological approach based on a facet model
to the solution of the scattering problem for a rough surface illuminated
by a plane electromagnetic wave.

1 Introduction
The main goal of a radiative transfer model for a discrete random medium (as
defined in Ref. [1]), confined to a layer with rough optical interfaces as its
boundaries is the derivation of equations describing the electromagnetic energy
budget of a finite volume of space or the reading of a specific detector of electro-
magnetic energy flow such as a well-collimated radiometer [2, 3]. This is usually
accomplished by arriving, in the final analysis, at a transport-type equation for
the specific coherency dyadic Σ (defined through the angular spectrum of the
coherency dyadic C).
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The procedure adopted in [4]–[6] is to write the Maxwell equations in an in-
tegral form with the help of Green functions and apply the Wigner transform to
the equation thus derived. Then, by differentiating this equation, the transport
equation is obtained. The coupling between the random medium and the rough
boundaries is described through the scattering operators of the rough surfaces.
Boundary conditions for Σ at the rough interfaces are added to the transport
equation in order to guarantee the uniqueness of solution. In particular, the
boundary conditions are obtained from the integral equations for the specific
coherency dyadics in the upward and downward directions written at the aver-
age planes of the rough surfaces. The transport equation for a sparse discrete
random layer is obtained by specializing the results for dense media, i.e., by as-
suming that the particle concentration is low and the positions of the particles
are uncorrelated. In this case, the matrix form representation of the transport
equation for Σ is analogous to the vector radiative transfer equation for the
specific intensity column vector I, while the boundary conditions coincide with
those for dense media. The main weakness of the approach in Refs. [4]–[6]
is that it is based on the phenomenological postulation of the so-called quasi-
uniform field approximation [7]. This allows for the use of the Wigner transform,
but amounts to making a priori assumptions about the random electromagnetic
field rather than specific macro- and microphysical assumptions about the dis-
crete random medium. This makes it problematic (if even possible) to establish
definitively the physical meaning of various quantities introduced on an ad hoc
basis and clarify their relevance to solving the main problem summarized in the
first sentence of this section.

A self-consistent radiative transfer theory for sparse discrete random media
with non-scattering boundaries, otherwise known as the microphysical radiative
transfer theory, has been developed in Refs. [2, 8, 9]. Taking into account
that for sparse media, (i) the particles are widely spaced so that each of them
is situated in the far-field region of all the other particles, and (ii) the field
(observation) point is situated in the far-field region of all the particles, the far-
field Neumann expansion in conjunction with the Twersky approximation is used
from the very outset to represent the total field inside the particulate medium.
In the rest of the derivation, (i) the coherency dyadic C is computed under
the ladder approximation, (ii) an order-of-scattering expansion for the specific
coherency dyadic Σ is derived, (iii) the order-of-scattering expansion for Σ is
cast into an integral equation for Σ, and finally, (iv) the integral equation for
Σ is used to obtain the integral form of the vector radiative transfer equation
for I.

To the extent that the correspondence with the standard phenomenological
transfer equation is demonstrated, the boundary conditions for I are then typ-
ically obtained by considering a separate problem, namely the scattering by a
rough surface illuminated by a plane electromagnetic wave. This specific prob-
lem is solved by using either an electromagnetic scattering model [10]–[12] or an
ad hoc geometrical-optics approach based on a facet model for the rough surface
[13]–[18]. The reflected and incident specific intensity column vectors as well as
the transmitted and incident specific intensity column vectors are related via
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the reflection and transmission matrices, respectively. The obvious weakness of
this phenomenological approach is that it is based on ad hoc manipulations with
second moments in the electromagnetic field rather than with the field itself.

The goal of this paper is to derive the boundary conditions for the specific
coherency dyadic at a rough interface in the case of a sparse discrete random
medium by adopting several aspects of the microphysical approach outlined in
Refs. [2, 8, 9]. The derivation is based on a modified Twersky approximation
for a scattering system consisting of a group of particles and a rough surface.
Essentially, we apply the microphysical approach to solve the scattering problem
for a rough surface illuminated by a plane electromagnetic wave propagating
in a discrete random medium with non-scattering boundaries. In a matrix-
form setting, the boundary conditions for the specific coherency dyadic yield
the boundary conditions for the specific intensity column vector, and hence
analytical expressions for the reflection and transmission matrices.

2 Boundary conditions for the specific coherency
dyadic at a rough interface

We consider a system of N identical homogeneous particles placed in a domain
D1 and centered at R1, R2,...,RN (Fig. 1). For simplicity we assume that the
particles have the same orientation and that the particle coordinate system is
aligned with the global coordinate system. The origins of the particles are con-
fined to a layer with a non-scattering lower plane boundary z = 0 and an upper
rough surface boundary S. The surface S separates the nonmagnetic domains
D1 and D2 of wavenumbers k1 = ω

√
ε1µ0 and k2 = ω

√
ε2µ0, respectively, where

ω is the angular frequency, ε1 and ε2 are the electric permittivities in domains
D1 and D2, respectively, and µ0 is the magnetic permeability of a vacuum. The
relative refractive index of domain D2 with respect to domain D1 is denoted
by m = k2/k1. The incident wave illuminating the discrete random layer from
below is a plane electromagnetic wave with the direction specified by a unit
vector ŝ and an amplitude E0(ŝ):

E0(r) = E0(ŝ)ejk1ŝ·r. (1)

Note that we imply and suppress throughout the paper the complex time-
harmonic factor exp(−jωt), where t is time. The average plane of the rough
surface S is the plane z = H, denoted by Σ. If M is a point on Σ, we let MS

be the corresponding point on the surface characterized by the random function
z = H +h(rM⊥), where rM is the position vector of M and rM⊥ the transverse
component of rM , i.e., rM = rM⊥ + (rM · ẑ)ẑ.

2.1 Reflection
We consider a downward reflection direction q̂R = q̂R(θR, ϕR) characterized by
the polar and azimuthal angles θR and ϕR, respectively, with θR > π/2, an
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Figure 1: Left: scattering geometry of a discrete random layer with a non-
scattering lower plane boundary z = 0 and an upper rough surface boundary S.
Right: local coordinate system attached to M .

elementary solid angle 4Ω around q̂R, and a field point P along the direction
q̂R situated at a distance ρ with respect to M (Fig. 1). The field point P is
specified in the global coordinate system by the position vector r and in the
local coordinate system attached to M by the position vector ρ = ρq̂R.

As the first step of our analysis, we derive a series representation for the
specific coherency dyadic in the upward direction q̂, Σ(rM , q̂), while as the
second step, we relate the specific coherency dyadic in the downward direction
q̂R, Σ(rM , q̂R) to Σ(rM , q̂).

Step 1. In the Twersky approximation for an isolated group of particles [8, 9],
only self-avoiding scattering paths (i.e., the paths that go through a scatterer
only once) are considered. As a result, the field exciting a particle at a point
near the particle is the total field that would exist at that point if the particle
were removed from the group. For a scattering system consisting of a group
of particles and a rough surface, we use a modified Twersky approximation
implying that (i) the field exciting (illuminating) the rough surface is the total
field produced by the group of particles in the absence of the rough surface,
and (ii) the field scattered by the surface is not scattered by the particles as
it propagates at the field point P . In other words, the total field exciting the
rough surface corresponds to a discrete random layer with the non-scattering
boundaries z = 0 and z = H and being illuminated by a plane electromagnetic
wave as in Eq. (1). Furthermore, because our goal is to derive the boundary
condition for the specific coherency dyadic, we consider the waves scattered by
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Figure 2: Geometry for computing the configuration average.

the surface in an elementary solid angle 4Ω around q̂R and propagating in a
non-scattering medium at P . It is clear that a scattering model based on the
modified Twersky approximation is more comprehensive than the conventional
model dealing with the scattering by a rough surface illuminated by a plane
electromagnetic wave propagating in free space.

For a discrete random layer with the non-scattering boundaries z = 0 and
z = H and being illuminated by a plane electromagnetic wave given by Eq. (1),
the total field at M (residing on the average plane of the rough surface) is given
by

E(rM ) = E0(rM ) +
∑

i

Escti(rM ). (2)

In the standard Twersky approximation for the group of particles, the order-of-
scattering expansion for the total field is

E(rM ) = E0(rM ) +
∑

i

U(ρ0i, ŝ) ·E0(Ri)

+
∑

i

∑

j 6=i
U(ρ0i, R̂ij) ·U(Rij , ŝ) ·E0(Rj) + . . . , (3)

where we use the notation of Fig. 2, Rij = Ri −Rj and

U(ρ0i, q̂) =
ejk1ρ0i

ρ0i
A(ρ̂0i, q̂) (4)
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for any incident direction q̂. In the above definition of the dyadic U, A is the
far-field scattering dyadic [2, 9]. A diagramatic representation of the expansion
(3) is

E(rM ) = M�— +
∑

i

M i
◦�— +

∑

i,j j 6=i

M i
◦

j
◦�— + . . . , (5)

where the symbol �— represents the incident field E0, while the composed
symbol —◦ denotes multiplying a field by the dyadic U. In the radiative transfer
theory of discrete random media the key quantity is the coherency dyadic. To
compute the coherent field, the procedure of configuration averaging based on
the assumption of ergodicity and requiring the computation of integrals over
particle positions, is considered. To integrate over all positions of particle i we
use a local coordinate system with the origin atM , to integrate over all positions
of particle j we use a local coordinate system with the origin at particle i, and
so on (Fig. 2). In this regard, we make the changes of variables

Ri = rM + p, Rj = Ri + Rji, etc. (6)

The integration domain is the whole D1. Therefore, for the direction p̂, p ranges
from zero atM to the corresponding value at the point C (where the straight line
with the direction vector p̂ crosses the lower plane boundary); for the direction
R̂ji, Rji ranges from zero at the origin at particle i to the corresponding value
at the point Ci (where the straight line with the direction vector R̂ji crosses
the lower plane boundary), etc. Referring to Fig. 2, the coherency dyadic in
the ladder approximation is given by

C(rM ) =
〈
E(rM )⊗E?(rM )

〉

=

∫

Ω−
δ(p̂ + ŝ)Cc(rM )d2p̂

+ n0

∫

Ω−

[∫
V(−p, ŝ) ·Cc(Ri) ·V

†
(−p, ŝ) p2dp

]
d2p̂

+ n2
0

∫

Ω−

[∫
V(−p,−R̂ji) ·V(−Rji, ŝ) ·Cc(Rj)

·V†(−Rji, ŝ) ·V†(−p,−R̂ji)p
2R2

ji dRjid
2R̂ji dp

]
d2p̂ + . . . , (7)

where Ω− is the lower unit half-sphere, Cc(rM ) =
〈
E(rM )

〉
⊗
〈
E?(rM )

〉
is the

coherent part of the coherency dyadic, Ec(rM ) =
〈
E(rM )

〉
is the coherent field,

i.e.,

Ec(rM ) =M �
=
〈M�— +

∑

i

M i
◦�— +

∑

i,j j 6=i

M i
◦

j
◦�— + . . .

〉
, (8)
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〈
·
〉
means the configuration average, ? and † stand for the complex conjugate

and the complex conjugate transpose (Hermitian transpose), respectively, and
(ρ0i = −p)

V(ρ0i, ŝ) =
t(ρ̂0i, ρ0i)

ρ0i
·A(ρ̂0i, ŝ), (9)

t(ρ̂0i, ρ0i) = exp
{
j
[
k1I +

2π

k1
n0A(ρ̂0i, ρ̂0i)

]
ρ0i

}
, (10)

with I being the identity dyadic and n0 the number concentration of particles. A
diagramatic illustration of the coherency dyadic is shown in Fig. 3. The specific
coherency dyadic at point M and in the upward direction q̂ = −p̂, Σ(rM ,−p̂)
is defined through the integral representation

C(rM ) =

∫

Ω−
Σ(rM ,−p̂)d2p̂, (11)

so that from Eq. (7), we have

Σ(rM ,−p̂) = δ(p̂ + ŝ)Cc(rM )

+ n0

∫
V(−p, ŝ) ·Cc(Ri) ·V

†
(−p, ŝ) p2dp

+ n2
0

∫
V(−p,−R̂ji) ·V(−Rji, ŝ) ·Cc(Rj)

·V†(−Rji, ŝ) ·V†(−p,−R̂ji)p
2R2

ji dRjid
2R̂ji dp+ . . . . (12)

It should be pointed out that under the Twersky approximation for the scatter-
ing system, the total field is evaluated at the point M on the average plane and
not at the point MS on the rough surface; therefore, Σ(rM ,−p̂) is a determin-
istic quantity with respect to surface fluctuations.

Step 2. In the local coordinate system attached to M , the field scattered by
particle i in its far-field region is a locally plane electromagnetic of amplitude
E0i propagating in the direction ρ̂0i,

E
(M)
scti(ρ0) = E0iejk1ρ̂0i·ρ0 , (13)

with

E0i = Escti(rM ) =
ejk1ρ0i

ρ0i
E∞scti(ρ̂0i), (14)

being the scattered field at M . Similarly, the incident field is a plane electro-
magnetic wave of amplitude E0(rM ) propagating in the direction ŝ,

E
(M)
0 (ρ0) = E0(rM )ejk1ŝ·ρ0 . (15)

8
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Figure 3: Ladder approximation for the coherency dyadic.

In general, for an incident plane electromagnetic wave E0(r) as in Eq. (1), the
field reflected by a rough surface is given by

ER(ρ) =
ejk1ρ

ρ
ASR(q̂R, ŝ) ·E0(rM ), (16)

where ASR is the local scattering reflection dyadic of the rough surface. We
assume that each elementary element of the rough interface scatters a plane
electromagnetic wave as if the rest of the surface did not exist. Taking into
account that the incident field at M is a superposition of the incident plane
electromagnetic wave and of local plane electromagnetic waves coming from all
the particles, we deduce that the reflected field at P is

ER(ρ) =
ejk1ρ

ρ
E∞R (q̂R), (17)

where the far-field pattern E∞R is

E∞R (q̂R) = ASR(q̂R, ŝ) ·E0(rM ) +
∑

i

ASR(q̂R, ρ̂0i) ·E0i. (18)
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Figure 4: Incidence and reflection directions q̂ and q̂R, respectively, and the area
of the illuminated surface 4A.

By means of the Twersky approximation, an order-of-scattering expansion for
E∞R reads as

E∞R (q̂R) = ASR(q̂R, ŝ) ·E0(rM )

+
∑

i

ASR(q̂R, ρ̂0i) ·
ejk1ρ0i

ρ0i
A(ρ̂0i, ŝ) ·E0(Ri)

+
∑

i,j, j 6=i
ASR(q̂R, ρ̂0i) ·

ejk1ρ0i

ρ0i
A(ρ̂0i, R̂ij)

· e
jk1Rij

Rij
A(R̂ij , ŝ) ·E0(Rj) + . . . , (19)

or in diagramatic representation,

E∞R =
M

♦�— +
∑

i

M

♦ i
◦�— +

∑

i,j j 6=i

M

♦ i
◦

j
◦�— + . . . , (20)

Here, the symbol
M

♦ means multiplying a field at M by the scattering reflection
dyadic ASR. From Eq. (8), it is apparent that the configuration average of E∞R
is

〈
E∞R

〉
=
M

♦
〈�— +

∑

i

i
◦�— +

∑

i,j j 6=i

i
◦

j
◦�— + . . .

〉

=
M

♦� , (21)

that is, 〈
E∞R (q̂R)

〉
= ASR(q̂R, ŝ) ·Ec(rM ). (22)

We define the (elementary) reflection coherency dyadic at M in an elemen-
tary solid angle 4Ω around q̂R by (cf. Eq. (17))

4C(rM , q̂R) := Σ(rM , q̂R)4Ω =
1

ρ2

〈
E∞R (q̂R)⊗E∞?R (q̂R)

〉
, (23)
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where Σ(rM , q̂R) is the specific reflection coherency dyadic. Here, we do not use
a special notation for the (specific) reflection coherency dyadic; the argument
q̂R, indicating a downward reflection direction, specifies the type of the (specific)
coherency dyadic. Using

4Ω =
4A
ρ2
| cos θR|, (24)

where 4A is the (elementary) area of the illuminated surface (Fig. 4), we find
that the specific reflection coherency dyadic can be written as

Σ(rM , q̂R) =
1

4A| cos θR|
〈
E∞R (q̂R)⊗E∞?R (q̂R)

〉
. (25)

To compute
〈
E∞R ⊗ E∞?R

〉
, appearing on the right-hand side of Eq. (25), we

employ the ladder approximation, illustrated diagramatically in Fig. 5. By
means of Eq. (12), we find

Σ(rM , q̂R) =
1

4A| cos θR|
{∫

Ω−
δ(p̂ + ŝ)ASR(q̂R,−p̂) ·Cc(rM )

·A†SR(q̂R,−p̂) d2p̂

+ n0

∫

Ω−

[∫
ASR(q̂R,−p̂) ·V(−p, ŝ) ·Cc(Ri)

·V†(−p, ŝ) ·A†SR(q̂R,−p̂) p2dp
]
d2p̂

+ n2
0

∫

Ω−

[∫
ASR(q̂R,−p̂) ·V(−p,−R̂ji) ·V(−Rji, ŝ)

·Cc(Rj) ·V
†
(−Rji, ŝ) ·V†(−p,−R̂ji) ·A

†
SR(q̂R,−p̂)

× p2R2
ji dRjid

2R̂ji dp
]
d2p̂ + . . .

}

=
1

4A| cos θR|

∫

Ω+

ASR(q̂R, q̂) ·Σ(rM , q̂) ·A†SR(q̂R, q̂) d2q̂, (26)

where Ω+ is the upper unit half-sphere. Finally, taking the average over surface
fluctuations, applying the dyadic identity (A⊗B) ·C = A ·C ·BT

, where A
T

is the transpose of A, and using
〈
Σ(rM , q̂)

〉
S

= Σ(rM , q̂) (because Σ(rM , q̂) is
deterministic), we obtain

〈
Σ(rM , q̂R)

〉
S

=
1

4A| cos θR|

∫

Ω+

〈
ASR(q̂R, q̂)⊗A

∗
SR(q̂R, q̂)

〉
S

·
〈
Σ(rM , q̂)

〉
S
d2q̂, (27)

where
〈
·
〉
S
means the average over surface fluctuations.

To compute
〈
ASR⊗A

?

SR

〉
S
, any asymptotic method available in rough surface

scattering theory can be used [10, 11, 19, 20]. In the Kirchhoff approach and
the geometrical optics approximation, the scattering reflection dyadic is given

11
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Figure 5: Ladder approximation of
〈
E∞R ⊗E∞?R

〉
.

by [11]

ASR(q̂R, q̂) = −2πjk1| cos θR|R21(k1q̂R⊥, k1q̂⊥)

=
jk1

4π
cR(q̂R, q̂)IhR (q̂R, q̂)r21(q̂R, q̂), (28)

where R21 is the reflection dyadic, q̂R = q̂R⊥ + (q̂R · ẑ)ẑ,

cR(q̂R, q̂) =
|q̂− q̂R|2

|q̂× q̂R|2|(q̂− q̂R) · ẑ|
, (29)

IhR (q̂R, q̂) =

∫

4A
ejk1(q̂−q̂R)·ρ0 d2ρ0⊥, (30)

ρ0 = ρ0⊥ + h(ρ0⊥)ẑ, and r21 is the two-dimensional dyadic

r21(q̂R, q̂) =
∑

η,µ=ϕ,θ

rηµ(q̂R, q̂)η̂(q̂R)⊗ µ̂(q̂) (31)

with entries

rϕϕ(q̂R, q̂) = r‖[ϕ̂(q̂) · q̂R][ϕ̂(q̂R) · q̂] + r⊥[θ̂(q̂) · q̂R][θ̂(q̂R) · q̂], (32)

rϕθ(q̂R, q̂) = r‖[θ̂(q̂) · q̂R][ϕ̂(q̂R) · q̂]− r⊥[ϕ̂(q̂) · q̂R][θ̂(q̂R) · q̂], (33)

rθϕ(q̂R, q̂) = r‖[ϕ̂(q̂) · q̂R][θ̂(q̂R) · q̂]− r⊥[θ̂(q̂) · q̂R][ϕ̂(q̂R) · q̂], (34)

rθθ(q̂R, q̂) = r‖[θ̂(q̂) · q̂R][θ̂(q̂R) · q̂] + r⊥[ϕ̂(q̂) · q̂R][ϕ̂(q̂R) · q̂]. (35)

The lower subscripts in the notations of the dyadics R21 and r21 indicate that the

12
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incident wave propagates from medium D1 to medium D2. In Eqs. (32)–(35),

r⊥ = r⊥(θL0) =
cos θL0 −

√
m2 − 1 + cos2 θL0

cos θL0 +
√

m2 − 1 + cos2 θL0
, (36)

r‖ = r‖(θL0) =
m2 cos θL0 −

√
m2 − 1 + cos2 θL0

m2 cos θL0 +
√

m2 − 1 + cos2 θL0
, (37)

are the Fresnel reflection coefficients, cos θL0 = −n̂0 · q̂ is the cosine of the local
incident angle θL0 , and

n̂0 =
q̂R − q̂

|q̂R − q̂| (38)

the surface normal unit vector atMS pointing in D1. Equation (38) reveals that
the incident and reflected wave directions form a specular reflection. From Eq.
(28) it is apparent that the computation of

〈
ASR(q̂R, q̂)⊗A

?

SR(q̂R, q̂)
〉
S
reduces

to the computation of
〈
IhR (q̂R, q̂)Ih?R (q̂R, q̂)

〉
S
. For doing this, the integral

IhR (q̂R, q̂)Ih?R (q̂R, q̂) =

∫

4A
ejt⊥·(ρ0⊥−ρ′0⊥)

× ejtz[h(ρ0⊥)−h(ρ′0⊥)] d2ρ′0⊥d
2ρ0⊥, (39)

with

t = k1(q̂− q̂R) = t⊥ + tzẑ, (40)
t⊥ = txx̂ + tyŷ, (41)
tz = t · ẑ = k1(q̂− q̂R) · ẑ, (42)

is first computed by the asymptotic method, and then the average over surface
fluctuations is taken; the result is

〈
IhR (q̂R, q̂)Ih?R (q̂R, q̂)

〉
S

=
(2π)24A

t2z
p
(
− tx
tz
,− ty

tz

)
. (43)

where p(α, β) is the probability density function for the slopes of the surface.
For the Gaussian probability density function

p(α, β) =
1

2πs2
exp
(
−α

2 + β2

2s2

)
, (44)

where s2 is the mean square surface slope, we end up with

〈
IhR (q̂R, q̂)Ih?R (q̂R, q̂)

〉
S

=
2π4A
t2zs

2
exp
(
−
t2x + t2y
2t2zs

2

)
. (45)

Taking account of Eq. (45), we then obtain

〈
Σ(rM , q̂R)

〉
S

=
1

8π| cos θR|

∫

Ω+

|q̂− q̂R|4
|q̂× q̂R|4|(q̂− q̂R) · ẑ|4s2

× exp
(
−
t2x + t2y
2t2zs

2

)
r21(q̂R, q̂) ·

〈
Σ(rM , q̂)

〉
S

· r†21(q̂R, q̂) d2q̂. (46)
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For a plane surface, the scattering reflection dyadic is

ASR(q̂R, q̂) = −2πjk1| cos θR|δ(q⊥ − qR⊥)R21(qR⊥,q⊥), (47)

where q⊥ = k1q̂⊥ and qR⊥ = k1q̂R⊥, while the reflection dyadic R21 is

R21(qR⊥,q⊥) = r‖θ̂(q̂R)⊗ θ̂(q̂) + r⊥ϕ̂(q̂R)⊗ ϕ̂(q̂). (48)

If the illuminated area is infinite, we have then to replace 4A in Eq. (26) by
(2π)2δ(q⊥ − qR⊥), so that inserting Eq. (47) in Eq. (26) and taking account of

d2q̂ =
1

k2
1 cos θ

d2q⊥, (49)

we get the boundary condition for the specific coherency dyadic

Σ(rM , q̂R) = R21(qR⊥,q⊥) ·Σ(rM , q̂) ·R†21(qR⊥,q⊥), (50)

where (q̂, q̂R, n̂0 = −ẑ) is a system of specular reflection directions.

2.2 Transmission
To establish the boundary condition for the transmitted field we proceed analo-
gously. For the upward transmission direction q̂T = q̂T(θT, ϕT) characterized by
the polar and azimuthal angles θT and ϕT, respectively, with θT < π/2 (Fig. 6),
we define the (elementary) transmission coherency dyadic atM in an elementary
solid angle 4Ω around q̂T by

4C(rM , q̂T) := Σ(rM , q̂T)4Ω =
1

ρ2

〈
E∞T (q̂T)⊗E∞?T (q̂T)

〉
, (51)

where E∞T is the far-field pattern of the transmitted field and Σ(rM , q̂T) the
specific transmission coherency dyadic. The final result is

〈
Σ(rM , q̂T)

〉
S

=
1

4A cos θT

∫

Ω+

〈
AST(q̂T, q̂)⊗A

?

ST(q̂T, q̂)
〉
S

(52)

·
〈
Σ(rM , q̂)

〉
S
d2q̂,

where AST is the scattering transmission dyadic of the rough surface.
In the Kirchhoff approach and the geometrical optics approximation, the

scattering transmission dyadic is given by [11]

AST(q̂T, q̂) = −2πjk2 cos θTT21(k2q̂T⊥, k1q̂⊥)

= − jk2

4π
cT(q̂T, q̂)IhT (q̂T, ŝ)t21(q̂T, q̂), (53)

where T21 is the transmission dyadic,

cT(q̂T, q̂) =
2
∣∣n̂0 · q̂T

∣∣∣∣q̂−mq̂T

∣∣
|q̂× q̂T|2|(q̂−mq̂T) · ẑ|

, (54)

IhT (q̂T, q̂) =

∫

4A
ej(k1q̂−k2q̂T)·ρ0 d2ρ0⊥, (55)
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and

n̂0 =
k1q̂− k2q̂T∣∣k1q̂− k2q̂T

∣∣ =
q̂−mq̂T∣∣q̂−mq̂T

∣∣ (56)

is the surface normal unit vector at MS pointing in D1. The relation (56) is
an equivalent statement of Snell’s law; thus, the incident and transmitted wave
directions form a specular transmission. The entries of the two-dimensional
dyadic

t21(q̂T, q̂) =
∑

η,µ=ϕ,θ

tηµ(q̂T, q̂)η̂(q̂T)⊗ µ̂(q̂) (57)

are given by Eqs. (32)–(35) with q̂T in place of q̂R, and with the Fresnel trans-
mission coefficients (cos θL0 = −n̂0 · q̂)

t⊥(θL0) =
2 cos θL0

cos θL0 +
√

m2 − 1 + cos2 θL0
= 1 + r⊥(θL0) (58)

t‖(θL0) =
2m cos θL0

m2 cos θL0 +
√

m2 − 1 + cos2 θL0
=

1

m
[1 + r‖(θL0)] (59)

in place of the Fresnel reflection coefficients r⊥(θL0) and r‖(θL0), respectively.
By using

〈
IhT (q̂T, q̂)Ih?T (q̂T, q̂)

〉
=

2π4A
t2zs

2
exp
(
−
t2x + t2y
2t2zs

2

)
, (60)

t = k1q̂− k2q̂T = k1(q̂−mq̂T) = t⊥ + tzẑ, (61)
t⊥ = txx̂ + tyŷ, (62)
tz = t · ẑ = k1(q̂−mq̂T) · ẑ, (63)

we obtain the boundary condition for the specific coherency dyadic

〈
Σ(rM , q̂T)

〉
S

=
m2

2π cos θT

∫

Ω+

∣∣(q̂−mq̂T) · q̂T

∣∣2

|q̂× q̂T|4|(q̂−mq̂T) · ẑ|4s2

× exp
(
−
t2x + t2y
2t2zs

2

)
t21(q̂T, q̂) ·

〈
Σ(rM , q̂)

〉
S

· t†21(q̂T, q̂)d2q̂. (64)

At this stage of our presentation, a brief remark is in order. Strictly speaking,
the geometrical optics approximation applies if the domain D2 is non-absorbing,
since otherwise, at the stationary point, the surface slopes are complex quanti-
ties. However, as in the Snell law, when the transmission angle can be complex,
we may admit, by an analytic continuation procedure, that the surface slopes
can be also complex. In this case, the above results are valid for an absorbing
domain D2.

For a plane surface, the scattering transmission dyadic is

AST(q̂T, q̂) = −2πjk2 cos θTδ(q⊥ − qT⊥)T21(k2q̂T⊥, k1q̂⊥), (65)
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Figure 6: Incidence and transmission directions q̂ and q̂T, respectively, and the
area of the illuminated surface 4A.

where, for q⊥ = k1q̂⊥ and qT⊥ = k2q̂T⊥,

T21(qT⊥,q⊥) = t‖θ̂(q̂T)⊗ θ̂(q̂) + t⊥ϕ̂(q̂T)⊗ ϕ̂(q̂), (66)

is the transmission dyadic. The boundary condition for the specific coherency
dyadic reads as

Σ(rM , q̂T) = m2 cos θT
cos θ

T21(qT⊥,q⊥) ·Σ(rM , q̂) ·T†21(qT⊥,q⊥), (67)

where (q̂, q̂T, n̂0 = −ẑ) is a system of specular transmission directions.

3 Reflection and transmission matrices
To derive the expressions of the reflection and transmission matrices, we switch
from the dyadic-form representations of the boundary conditions (46) and (64)
to matrix-form representations [2, 8, 9]. In the case of reflection, we define the
specific coherency column vectors in domain D1 by

J(rM , q̂R) =
1

2

√
ε1

µ0




Σθθ(rM , q̂R)
Σθϕ(rM , q̂R)
Σϕθ(rM , q̂R)
Σϕϕ(rM , q̂R)


 , (68)

and

J(rM , q̂) =
1

2

√
ε1

µ0




Σθθ(rM , q̂)
Σθϕ(rM , q̂)
Σϕθ(rM , q̂)
Σϕϕ(rM , q̂)


 , (69)
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where Σηµ are the entries of the specific coherency dyadic
〈
Σ
〉
S
, and the specific

intensity column vectors by

I(rM , ·) = DJ(rM , ·) =
1

2

√
ε1

µ0




Σθθ(rM , ·) + Σϕϕ(rM , ·)
Σθθ(rM , ·)− Σϕϕ(rM , ·)
−Σθϕ(rM , ·)− Σϕθ(rM , ·)
j[Σϕθ(rM , ·)− Σθϕ(rM , ·)]


 , (70)

where

D =




1 0 0 1
1 0 0 −1
0 −1 −1 0
0 −j j 0


 (71)

is a transformation matrix. We find

I(rM , q̂R) =
1

π

∫

Ω+

R(q̂R, q̂)I(rM , q̂) cos θ d2q̂, (72)

where, for q̂ = q̂(θ, ϕ), the reflection matrix R(q̂R, q̂) is given by

R(q̂R, q̂) =
1

8| cos θR| cos θ

|q̂− q̂R|4
|q̂× q̂R|4|(q̂− q̂R) · ẑ|4s2

× exp
(
−
t2x + t2y
2t2zs

2

)
M(rηµ). (73)

The explicit expressions of the entries of the 4× 4 matrix M(rηµ), η, µ = ϕ, θ are
listed in the Appendix. The representation (51) of the reflection matrix can be
also found in Ref. [12].

In the case of transmission, we define the specific coherency column vector
in domain D2 by

J(rM , q̂T) =
1

2

√
ε2

µ0




Σθθ(rM , q̂T)
Σθϕ(rM , q̂T)
Σϕθ(rM , q̂T)
Σϕϕ(rM , q̂T)


 , (74)

and obtain the following boundary condition for the specific intensity column
vector:

I(rM , q̂T) =
1

π

∫

Ω+

T(q̂T, q̂)I(rM , q̂) cos θ d2q̂, (75)

with the transmission matrix being given by

T(q̂T, q̂) =
m3

2 cos θT cos θ

∣∣(q̂−mq̂T) · q̂T

∣∣2

|q̂× q̂T|4|(q̂−mq̂T) · ẑ|4s2

× exp
(
−
t2x + t2y
2t2zs

2

)
M(tαβ). (76)
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4 Final remarks
We conclude our analysis with some comments.

1. In the conventional derivation of the reflection matrix, a rough surface
illuminated by a plane electromagnetic wave as in Eq. (1) is considered.
In that case, the far-field pattern of the reflected field at P is (cf. Eq.
(16))

E∞R (q̂R) = ASR(q̂R, ŝ) ·E0(rM ), (77)

and the specific reflection coherency dyadic is (cf. Eq. (25))

Σ(q̂R) =
1

4A| cos θR|
ASR(q̂R, ŝ) ·C0(ŝ) ·A†SR(q̂R, ŝ), (78)

where
C0(ŝ) = E0(rM )⊗E?

0(rM ) = E0(ŝ)⊗ E?0(ŝ). (79)

Using the representation E0(ŝ) = E0θθ̂(ŝ) + E0ϕϕ̂(ŝ), implying (say, for
complex amplitudes E0η, η = ϕ, θ)

C0(ŝ) =
∑

η,µ=ϕ,θ

E0ηE?0µη̂(ŝ)⊗ µ̂(ŝ), (80)

and putting

I0(ŝ) =
1

2

√
ε1

µ0




E0θE?0θ + E0ϕE?0ϕ
E0θE?0θ − E0ϕE?0ϕ
−E0θE?0ϕ − E0ϕE?0θ
j[E0ϕE?0θ − E0θE?0ϕ]


 , (81)

we conclude that
I(q̂R) =

1

π
R(q̂R, ŝ)I0(ŝ) cos θ0, (82)

with R(q̂R, ŝ) as in Eq. (73).

2. The Kirchhoff approach does not account for shadowing of the incident
light by the surface undulations. Attempts to include corrections for shad-
owing have been made in the literature by multiplying the reflection and
transmission matrices by a shadowing function depending on the mean
square surface slope [21, 22]. The usage of a shadowing function extends
the validity of the Kirchhoff approach to larger angles of incidence.

3. From Eqs. (50) and (67) we find that for a plane surface, the reflection
matrix, defined by

I(rM , q̂R) =
1

π
R(q̂R, q̂)I(rM , q̂) cos θ, (83)

is
R(q̂R, q̂) =

π

cos θ
M(rηµ), (84)
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with rθθ = r‖, rϕϕ = r⊥, and rθϕ = rϕθ = 0, while the transmission
matrix, defined by

I(rM , q̂T) =
1

π
T(q̂T, q̂)I(rM , q̂) cos θ (85)

is
T(q̂R, q̂) = πm3 cos θT

cos2 θ
M(tηµ), (86)

with tθθ = t‖, tϕϕ = t⊥, and tθϕ = tϕθ = 0.

4. Letting cos Θ = q̂ · q̂R = cos θ cos θR + sin θ sin θR cos(ϕ−ϕR) be the cosine
of the scattering angle, and defining

cosβ =
cos θ − cos θR√

2(1− cos Θ)
, (87)

we obtain an equivalent representation for the reflection matrix:

R(q̂R, q̂) =
1

8| cos θR| cos θ

1

sin4 Θ cos4 β s2

× exp
(
−1− cos2 β

2s2 cos2 β

)
M(rηµ). (88)

Similarly, defining

cosβ =
cos θ −m cos θT√
1 + m2 − 2m cos Θ

, (89)

with cos Θ = q̂ · q̂T, we obtain an equivalent representation for the trans-
mission matrix:

T(q̂T, q̂) =
m3

2 cos θT cos θ

(m− cos Θ)2

sin4 Θ(cos θ −m cos θT)4s2

× exp
(
−1− cos2 β

2s2 cos2 β

)
M(tηµ). (90)

The relations (88) and (90) are practical formulas for computing the re-
flection and transmission matrices for a rough surface and coincide with
those of the phenomenological approach (based on a facet model for the
rough surface) described in [18]. It should be pointed out that in [18],
the Fresnel reflection and transmission coefficients are replaced by the
corresponding reflection and transmission matrices, which in turn, are
multiplied by the rotation matrices corresponding to the transformation
of the radiance vectors from the scattering to the meridian planes. In our
derivation, these transformations are already encapsulated in the matrices
M(rηµ) and M(tηµ).
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5. In the scalar radiative transfer, the quantities of interest are the first el-
ement of the specific intensity column vector (the specific intensity) and
the (1,1) element of the reflection (transmission) matrix. This simplifica-
tion is widely used when the medium is illuminated by unpolarized light
and only the specific intensity of the multiply scattered light needs to be
computed. Using

∑

η,µ=ϕ,θ

r2
ηµ =

r2
‖ + r2

⊥
2

sin4 Θ, (91)

in Eq. (88) gives

[R(q̂R, q̂)]11 =
1

8| cos θR| cos θ

1

cos4 β s2

× exp
(
−1− cos2 β

2s2 cos2 β

)r2
‖ + r2

⊥
2

, (92)

while using
∑

η,µ=ϕ,θ

t2ηµ =
t2‖ + t2⊥

2
sin4 Θ, (93)

in Eq. (90) yields

[T(q̂R, q̂)]11 =
m3

2 cos θT cos θ

(m− cos Θ)2

(cos θ −m cos θT)4s2

× exp
(
−1− cos2 β

2s2 cos2 β

) t2‖ + t2⊥
2

. (94)

Note that the relations (92) and (94) can be found in Ref. [18].

Appendix
The entries of the 4× 4 matrix M(rηµ), η, µ = ϕ, θ are given by

[M]11 =
1

2
(|rθθ|2 + |rθϕ|2 + |rϕθ|2 + |rϕϕ|2), (95)

[M]12 =
1

2
(|rθθ|2 − |rθϕ|2 + |rϕθ|2 − |rϕϕ|2), (96)

[M]13 = −Re(rθθr?θϕ + rϕϕr
?
ϕθ), (97)

[M]14 = −Im(rθθr
?
θϕ − rϕϕr?ϕθ), (98)

[M]21 =
1

2
(|rθθ|2 + |rθϕ|2 − |rϕθ|2 − |rϕϕ|2), (99)

[M]22 =
1

2
(|rθθ|2 − |rθϕ|2 − |rϕθ|2 + |rϕϕ|2), (100)

[M]23 = −Re(rθθr?θϕ − rϕϕr?ϕθ), (101)

[M]24 = −Im(rθθr
?
θϕ + rϕϕr

?
ϕθ), (102)
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[M]31 = −Re(rθθr?ϕθ + rϕϕr
?
θϕ), (103)

[M]32 = −Re(rθθr?ϕθ − rϕϕr?θϕ), (104)

[M]33 = Re(rθθr?ϕϕ + rθϕr
?
ϕθ), (105)

[M]34 = Im(rθθr
?
ϕϕ + rθϕr

?
ϕθ), (106)

[M]41 = −Im(rϕθr
?
θθ + rϕϕr

?
θϕ), (107)

[M]42 = −Im(rϕθr
?
θθ − rϕϕr?θϕ), (108)

[M]43 = Im(rϕϕr
?
θθ − rθϕr?ϕθ), (109)

[M]44 = Re(rϕϕr?θθ − rθϕr?ϕθ). (110)

For practical applications, it is important to note that rηµ = rηµ(θ, θR, ϕ− ϕR),
and so, that an azimuthal expansion of M(rηµ) in terms of the relative azimuthal
angle ϕ−ϕR is appropriate. This becomes apparent from the explicit expressions
of the quantities which enter in Eqs. (32)–(35), namely

cos θL0 =

√
1− cos Θ

2
, (111)

ϕ̂(q̂) · q̂R = − sin θR sin(ϕ− ϕR), (112)

θ̂(q̂) · q̂R = cos θ sin θR cos(ϕ− ϕR)− sin θ cos θR, (113)
ϕ̂(q̂R) · q̂ = sin θ sin(ϕ− ϕR), (114)

θ̂(q̂R) · q̂ = cos θR sin θ cos(ϕ− ϕR)− sin θR cos θ. (115)

The matrix M(tηµ) has the same property. The scalars η̂(q̂) · q̂T and η̂(q̂T) · q̂
are as in Eqs. (112)–(115) but with θT and ϕT replacing θR and ϕR, respectively,
while the cosine of the local incident angle θL0 is given by

cos θL0 =
m cos Θ− 1√

1 + m2 − 2m cos Θ
. (116)
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