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. Introduction 

The link between the electromagnetic scattering theory and the

lassical radiometry theory can be said to consist in a relation-

hip between the dyadic correlation function C , which is a “space–

pace” quantity, and the specific dyadic correlation function �,

hich is a “space–phase” quantity. In Refs. [1,2] , we defined �
hrough an angular spectrum representation for C . The procedure

as to derive a series expansion for C from which the angular

pectrum representation was apparent; the resulting series expan-

ion for � has led to a transport-type equation for this quantity.

undamentally, the conceptual approach adopted in Ref. [1] fol-

ows that developed in Refs. [3,4] , wherein the randomness of the

otal electromagnetic field is a direct and explicit consequence of

he randomness of particle positions. Hence, no ad hoc assump-

ions about the statistical properties of the field are required. Yet

his approach can become cumbersome in the case of a discrete

andom medium with scattering rough boundaries. 

An alternative, albeit less rigorous, way to establish the above

ink is to resort to ad hoc assumptions about statistical prop-

rties of the random electromagnetic field and consider the

igner transform of the dyadic correlation function C (r , r ′ ) =
E (r ) � E 

� (r ′ ) 
〉
V 

[5–9] , that is, 

 W (R , p ) = 

∫ 
C 

(
R + 

ρ

2 

, R − ρ

2 

)
e −j p ·ρ d 

3 ρ, (1)

here R = (r + r ′ ) / 2 and ρ = r − r ′ are the “center of gravity” and

he difference variable, respectively, � is the dyadic product sign,

 stands for complex conjugate, and 

〈
·
〉
V 

denotes the average over

olumetric fluctuations of the field at points r and r ′ implicitly

aused by randomly varying particle positions. In Refs. [7,8] , the

igner function (1) is called the local spectrum of the random

eld, and it is noted that in the presence of statistical inhomo-

eneities, the Wigner function can take on negative values. There-

ore, in the general case, an energy interpretation cannot be at-

ributed to this quantity. Only upon making an a priori assumption

hat the random field is quasi-uniform, the Wigner function be-

omes a measure of the intensity fluctuations. In the quasi-uniform

eld approximation it is assumed that the dyadic correlation func-

ion varies weakly with R and varies strongly with ρ. When this

ssumption is made and the evanescent waves are neglected, the

igner transform is of the form 

 W (R , p ) ∝ δ(p − K 

′ ) �(R , ̂  p ) , (2)

o that by applying the inverse Wigner transform, we obtain the

ngular spectrum representation 

 

(
R + 

ρ

2 

, R − ρ

2 

)
∝ 

∫ 
�(R , ̂  p ) e jK 

′ ̂ p ·ρ d 

2 ̂ p , (3)

here K is the effective wavenumber, K 

′ = Re (K ) , K 

′′ = Im (K ) , and

is the delta function. (Note that upright bold characters with

arets hereinafter denote unit vectors.) Thus, by way of Eq. (2) ,

he Wigner transform C W reproduces the specific dyadic correlation

unction � in the case p = K 

′ ; therefore, an alternative procedure

s to derive a transport-type equation for C W . 

In describing the radiative transfer in discrete random media,

e distinguish two distance scales. The long-distance scale is char-

cterized by the mean free path l mp = 1 / (2 K 

′′ ) , while the short-

istance scale is characterized by the effective wavelength scale

e = 2 π/K 

′ [10,11] . Transport type equations are derived based on

he assumption that l mp � λe , that is, the mean free path length

s much larger than the wavelength scale. The quasi-uniform field

pproximation implies that the scale lengths of the dyadic correla-

ion function with respect to R and ρ are the mean free path l mp 
nd the wavelength scale λe , respectively. 
In the low-frequency limit, the radiative transfer equation for

 half-space of random, densely-distributed particles has been de-

ived in Refs. [10,11] , and for a layer with plane boundaries in

ef. [12] . The effective wavenumber is computed from the Dyson

quation by using the quasi-crystalline approximation with coher-

nt potential, while the radiative transfer equation is gained from

he Bethe–Salpeter equation for the diffuse dyadic correlation func-

ion 

〈
E (r ) � E � (r ′ ) 

〉
V 

under the ladder approximation, where E (r )

s the diffuse (incoherent) scattered field. The solution method is

ased on a plane wave representation of the diffuse field, which

n turn, yields an integral representation for 
〈
E (r ) � E � (r ′ ) 

〉
V 

in

erms of the dyadic correlation function for the amplitudes of the

lane waves. The radiative transfer equation is formulated with re-

pect to the dyadic correlation function for the plane wave ampli-

udes, and is obtained by balancing the terms with the same phase

ependence on the left- and the right-hand side of the Bethe–

alpeter equation. Actually, in the integral term of the Bethe–

alpeter equation, only the constructive interference terms vary-

ng on the long-distance scale l mp are retained; the destructive in-

erference terms varying on the short-distance scale λe are dis-

egard. Physically, constructive interference terms correspond to

aves traveling over the same paths, while destructive interfer-

nce terms correspond to waves traveling along mutually oppo-

ite paths. This solution method does not use the Wigner trans-

orm; rather it is based on the application of the two-dimensional

ourier transform to the Bethe–Salpeter equation along the trans-

erse component ρ⊥ of the difference variable ρ. 

A general approach for analyzing the radiative transfer in a

ensely-packed discrete random layer with rough boundaries has

een developed by Soubret and Berginc [13,14] . That approach

ses scattering operators to describe the wave interaction with the

oundaries [15] , and is based on a Green function formalism. In

articular, two kinds of Green functions are introduced: the Green

unction G (r , r ′ ) describing the field scattered by the layer con-

aining particles and by the rough surfaces, and the Green func-

ion G K (r , r ′ ) describing the field scattered by a homogeneous layer

ith rough boundaries and being characterized by an effective

avenumber K . The latter is expressed as a function of the rough

urface scattering operators. The derivation is based on the corre-

ated ladder-approximated Bethe–Salpeter equation for the tetradic

G (r , r ′ ) � G 

� 
(r , r ′ ) 

〉
V S 

, where 
〈
·
〉
S 

means the average over surface

uctuations and 

〈〈
·
〉〉

V S 
means the average over volumetric and

urface fluctuations. The effective wavenumber and the intensity

perator are computed in the framework of the quasi-crystalline

pproximation with coherent potential. By applying the Wigner

ransform to the Bethe–Salpeter equation and differentiating the

esulting equation, a radiative transfer equation for the Wigner

ransform of 
〈
G (r , r ′ ) � G 

� 
(r , r ′ ) 

〉
V S 

is obtained. This is shown to be

quivalent to a radiative transfer equation for the tetradic diffuse

pecific intensity. The source term of this equation depends on the

etradic reduced intensity which is defined as the dyadic product

f the scattering operators at the rough interface (the interface be-

ween the layer and the medium containing the sources of the in-

ident field). 

A similar approach based on surface scattering operators and

igner transform was used by Mudaliar [16] . However, in this

ase, (i) the starting point is the Bethe–Salpeter equation for

he dyadic correlation function 

〈
E (r ) � E 

� (r ′ ) 
〉
V S 

, (ii) the effec-

ive wavenumber and the intensity operator are computed in the

ramework of the effective field approximation, and (iii) the radia-

ive transfer equation is formulated for the Wigner transform of

E (r ) � E 

� (r ′ ) 
〉
V S 

. Thus, the analysis corresponds to a discrete ran-

om layer with a sparse concentration of particles. 

All methods described above are based on a priori assump-

ions about the random electromagnetic field, including the effec-
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Fig. 1. Discrete random layer with rough boundaries. 
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tive field approximation. According to this approximation, the co-

herent field in a discrete random medium behaves as a wave in a

homogeneous medium with an effective propagation constant. In

this paper, we revisit the approach used by Mudaliar [16] for ana-

lyzing radiative transfer in a layer of discrete random medium with

rough boundaries and a sparse concentration of particles. Our goal

is to clarify the underlying assumptions and to discuss the mean-

ing of the effective field approximation. 

2. Radiative transfer theory 

We consider a discrete random medium with boundaries de-

scribed by the random functions z = h 1 (r ⊥ ) and z = H + h 2 (r ⊥ ) as

shown in Fig. 1 . The domains D 0 and D 2 are homogeneous media

with permittivities ε0 and ε2 , respectively. The random medium is

made of N identical spherical particles of radius a and permittiv-

ity ε p placed in the background medium D 1 of permittivity ε1 . The

particles are centered at R 1 , R 2 , ... , R N , and the system of parti-

cles is characterized by the number concentration (the number of

particles per unit volume) n 0 = N/V, where V is the volume acces-

sible to the particles. All domains are nonmagnetic and character-

ized by the permeability μ0 . The wave numbers in the domains D 0 

and D 2 are k 2 
0 

= ω 

2 μ0 ε 0 and k 2 
2 

= ω 

2 μ0 ε 2 , respectively, while the

wave number in the random medium D 1 is 

k 2 V (r ) = k 2 1 + 

∑ 

i 

k 2 1 (m 

2 − 1)�(r − R i ) , (4)

where i numbers the N particles, k 2 
1 

= ω 

2 μ0 ε 1 , ω is the angular

frequency, m = k p /k 1 is the relative refractive index of the particles

with respect to the background medium, 

�(r ) = 

{
1 , r ∈ D p 

0 , r / ∈ D p 
, 

and D p is the domain occupied by a particle centered at the origin

of the coordinate system (a sphere of radius a ). The incident wave

is a plane electromagnetic wave of amplitude E 0 ( ̂  s ) propagating in

the medium D 0 in the up-going direction ̂

 s = ̂

 s ⊥ + ̂

 s z ̂  z = ̂

 s x ̂  x + ̂

 s y ̂  y +
 s z ̂  z , that is, 

E 0 (r ) = [ E 0 θ ̂ θ( ̂  s ) + E 0 ϕ ̂ ϕ ( ̂  s )] e j k 0 s ·r . (5)

In Eq. (5) , ̂ θ( ̂  s ) and 

̂ ϕ ( ̂  s ) are the unit polar-coordinate vec-

tors of the direction 

̂ s , and k 0 s is the wave vector; it is given

by k 0 s = k 0 ̂  s = k 0 s ⊥ + k 0 z (k 0 s ⊥ ) ̂  z , with k 0 s ⊥ = k 0 ̂  s ⊥ = k 0 ( ̂  s x ̂  x + ̂

 s y ̂  y )

and k 0 z (k 0 s ⊥ ) = k 0 ̂  s z . 

In the following, we assume that the properties of the rough

surfaces and the discrete random medium are statistically indepen-

dent , which means that 
〈〈
·
〉〉

V S 
= 

〈〈
·
〉
V 

〉
S 

= 

〈〈
·
〉
S 

〉
V 

. 
.1. Boundary-value problems 

The following are the equations that govern the fields in each

edium: 

 × ∇ × E 

0 (r ) − k 2 0 E 

0 (r ) = 0 , (6)

 × ∇ × E 

1 (r ) − k 2 V E 

1 (r ) = 0 , (7)

 × ∇ × E 

2 (r ) − k 2 2 E 

2 (r ) = 0 , (8)

here E 

i is the field in domain D i , i = 1 , 2 , 3 . The boundary condi-

ions on the lower and upper rough surfaces are 

 

 1 (r ) × E 

0 (r ) = ̂

 n 1 (r ) × E 

1 (r ) , (9)

 

 1 (r ) × [ ∇ × E 

0 (r )] = ̂

 n 1 (r ) × [ ∇ × E 

1 (r )] , (10)

nd 

 

 2 (r ) × E 

1 (r ) = ̂

 n 2 (r ) × E 

2 (r ) , (11)

 

 2 (r ) × [ ∇ × E 

1 (r )] = ̂

 n 2 (r ) × [ ∇ × E 

2 (r )] , (12)

espectively. These systems are supplemented by the radiation con-

ition well away from the layer. In Eqs. (9) –(10) , r = r ⊥ + h 1 (r ⊥ ) ̂z
nd 

̂ n 1 (r ) is the local unit vector normal to the rough surface z =
 1 (r ⊥ ) pointing toward D 0 , while in Eqs. (11) –(12) , r = r ⊥ + [ H +
 2 (r ⊥ )] ̂  z and 

̂ n 2 (r ) is the local unit vector normal to the rough

urface z = h 2 (r ⊥ ) pointing toward D 2 . For a source point r ′ in D 1 ,

he dyadic Green’s functions G 

01 
(r , r ′ ) , G 

11 
(r , r ′ ) , and G 

21 
(r , r ′ ) de-

cribe the fields scattered by the rough surfaces and the discrete

andom medium at the field point r in the domains D 0 , D 1 , and

 2 , respectively. They satisfy a boundary-value problem consisting

n the dyadic wave equations 

 × ∇ × G 

01 
(r , r ′ ) − k 2 0 G 

01 
(r , r ′ ) = 0 , (13)

 × ∇ × G 

11 
(r , r ′ ) − k 2 V G 

11 
(r , r ′ ) = δ(r − r ′ ) I , (14)

 × ∇ × G 

21 
(r , r ′ ) − k 2 2 G 

21 
(r , r ′ ) = 0 , (15)

here δ(r − r ′ ) is the three-dimensional delta function and I is the

dentity dyadic, and the boundary conditions 

 

 1 (r ) × G 

01 
(r , r ′ ) = ̂

 n 1 (r ) × G 

11 
(r , r ′ ) , (16)

 

 1 (r ) × [ ∇ × G 

01 
(r , r ′ )] = ̂

 n 1 (r ) × [ ∇ × G 

11 
(r , r ′ )] , (17)

nd 

 

 2 (r ) × G 

11 
(r , r ′ ) = ̂

 n 2 (r ) × G 

21 
(r , r ′ ) , (18)

 

 2 (r ) × [ ∇ × G 

11 
(r , r ′ )] = ̂

 n 2 (r ) × [ ∇ × G 

21 
(r , r ′ )] , (19)

n the lower and upper rough surfaces, respectively. 

We assume that the effective wavenumber K in the domain D 1 

s known, and denote by E 

0 
K (r ) , E 

1 
K (r ) , and E 

2 
K (r ) the fields de-

cribing the scattering by a homogeneous layer with wavenumber

 and the same rough boundaries. These fields satisfy the wave

quations (6) –(8) with k V replaced by K , i.e. 

 × ∇ × E 

0 
K (r ) − k 2 0 E 

0 
K (r ) = 0 , (20)
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 × ∇ × E 

1 
K (r ) − K 

2 E 

1 
K (r ) = 0 , (21) 

 × ∇ × E 

2 
K (r ) − k 2 2 E 

2 
K (r ) = 0 , (22) 

nd the boundary conditions (9) –(12) . The pertinent dyadic Green’s

unctions are G 

01 

K (r , r ′ ) , G 

11 

K (r , r ′ ) , and G 

21 

K (r , r ′ ) solving the dyadic

ave equations 

 × ∇ × G 

01 

K (r , r ′ ) − k 2 0 G 

01 

K (r , r ′ ) = 0 , (23) 

 × ∇ × G 

11 

K (r , r ′ ) − K 

2 G 

11 

K (r , r ′ ) = δ(r − r ′ ) I , (24) 

 × ∇ × G 

21 

K (r , r ′ ) − k 2 2 G 

21 

K (r , r ′ ) = 0 , (25) 

nd the boundary conditions (16) –(19) . 

.2. Integral equations for the fields and the dyadic Green’s functions 

Defining the scattering potential U c by 

 c (r , r ′ ) = (k 2 V − K 

2 ) δ(r − r ′ ) I = U (r , r ′ ) − (K 

2 − k 2 1 ) δ(r − r ′ ) I , 
(26) 

here U (r , r ′ ) = 

∑ 

i U i (r , r ′ ) , U i (r , r ′ ) = U i (r ) δ(r − r ′ ) I , and U i (r ) =
 

2 
1 
(m 

2 − 1)�(r − R i ) , it can be shown that [13] 

1. the fields E 

0 , E 

1 , and E 

2 satisfying the system of integral equa-

tions 

E 

0 = E 

0 
K + G 

01 

K U c E 

1 , (27) 

E 

1 = E 

1 
K + G 

11 

K U c E 

1 , (28) 

E 

2 = E 

2 
K + G 

21 

K U c E 

1 , (29) 

also solve the boundary-value problem (6) –(12) , and 

2. the dyadic Green’s functions G 

01 
, G 

11 
, and G 

21 
satisfying the

system of integral equations 

G 

01 = G 

01 

K + G 

01 

K U c G 

11 
, (30) 

G 

11 = G 

11 

K + G 

11 

K U c G 

11 
, (31) 

G 

21 = G 

21 

K + G 

21 

K U c G 

11 
, (32) 

also solve the boundary-value problem (13) –(19) . 

To prove for example Eq. (7) we apply the operator ∇ × ∇ ×
K 

2 I to Eq. (28) ; using ∇ × ∇ × G 

11 

K − K 

2 G 

11 

K = δI together with

 c = (k 2 
V 

− K 

2 ) δI , where δI stands for δ(r − r ′ ) I , we obtain 

 × ∇ × E 

1 − K 

2 E 

1 = ∇ × ∇ × E 

1 
K − K 

2 E 

1 
K 

+ (∇ × ∇ × G 

11 

K − K 

2 G 

11 

K ) U c E 

1 

= U c E 

1 

= (k 2 V − K 

2 ) E 

1 . (33) 

qs. (27) –(29) and (30) –(32) show that if G 

11 
is the solution of

he integral equation (31) , and the fields and the dyadic Green’s

unctions for a homogeneous layer with wavenumber K are known,

hen the fields and the dyadic Green’s functions for a discrete ran-

om layer can be readily computed. 
Let us introduce the transition operator T c as the solution of

he Lippmann–Schwinger equation 

 c = U c + U c G 

11 

K T c . (34) 

onsidering the iterated solution of the Lippmann–Schwinger

q. (34) , 

 c = U c + U c G 

11 

K U c + · · · , (35) 

nd the iterated solution of the integral equation (cf. Eq. (31) )

 

11 = G 

11 

K + G 

11 

K U c G 

11 
, 

 

11 = G 

11 

K + G 

11 

K U c G 

11 

K + G 

11 

K U c G 

11 

K U c G 

11 

K + · · ·
= G 

11 

K + G 

11 

K ( U c + U c G 

11 

K U c + · · · ) G 

11 

K , (36) 

e find, 

 

11 = G 

11 

K + G 

11 

K T c G 

11 

K . (37) 

y means of the series expansions (35) and (36) it can be

hown that U c G 

11 

K T c = T c G 

11 

K U c ; an equivalent representation of

q. (34) is then 

 c = U c + T c G 

11 

K U c . (38) 

rom Eqs. (31) and (37) , we get 

 c G 

11 

K = U c G 

11 
, (39) 

n which case, Eq. (38) becomes 

 c = U c + U c G 

11 

K U c . (40) 

ikewise, considering the iterated solution of the integral equation

cf. Eq. (28) ) E 

1 = E 

1 
K + G 

11 

K U c E 

1 and using Eq. (35) , we obtain 

 

1 = E 

1 
K + G 

11 

K T c E 

1 
K , (41)

o that the relation 

 c E 

1 
K = U c E 

1 (42) 

eadily follows. Inserting Eq. (42) in Eqs. (27) –(29) gives 

 

0 = E 

0 
K + G 

01 

K T c E 

1 
K , (43) 

 

1 = E 

1 
K + G 

11 

K T c E 

1 
K , (44) 

 

2 = E 

2 
K + G 

21 

K T c E 

1 
K , (45) 

hile inserting Eq. (39) in Eqs. (30) –(32) yields 

 

01 = G 

01 

K + G 

01 

K T c G 

11 

K , (46) 

 

11 = G 

11 

K + G 

11 

K T c G 

11 

K , (47) 

 

21 = G 

21 

K + G 

21 

K T c G 

11 

K . (48) 

rom Eqs. (43) –(48) , we see that all the scattering processes in the

iscrete random medium are described by the transition operator

 c [13] . 
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R H21 (k ⊥ , k 1 ⊥ ) = e R 21 (k ⊥ , k 1 ⊥ ) . (72) 
2.3. Coherent field and average dyadic Green’s function 

To compute the configuration averages of the fields and the

dyadic Green’s functions we impose the effective field approxima-

tion: 〈
G 

11 〉
V 

= G 

11 

K , (49)

in which case, from Eq. (47) , we obtain 〈
T c 

〉
V 

= 0 . (50)

Taking the configuration average of Eqs. (43) –(45) , and using

Eq. (50) we obtain 〈
E 

0 
〉
V 

= E 

0 
K , 

〈
E 

1 
〉
V 

= E 

1 
K , 

〈
E 

2 
〉
V 

= E 

2 
K , (51)

while taking the configuration average of Eqs. (46) and (48) , and

using again Eq. (50) we obtain 〈
G 

01 〉
V 

= G 

01 

K , 
〈
G 

21 〉
V 

= G 

21 

K . (52)

Thus, under the effective field approximation, the configuration av-

erages of the fields and the dyadic Green’s functions are the fields

and the dyadic Green’s functions, respectively, corresponding to a

homogeneous layer with wavenumber K . Therefore, and in view of

Eqs. (49) and (51) , the coherent field 

〈
E 

1 
〉
V 

and the average dyadic

Green’s function 

〈
G 

11 〉
V 

are computed as follows. 

1. For the incident plane electromagnetic wave as in Eq. (5) , the

coherent field in the domain D 1 is a superposition of up-going

and down-going waves 〈
E 

1 (r ) 
〉
V 

= E 

1 
K (r ) = 

∑ 

a = ±
E 

1 a 
c (r ) , (53)

with 

E 

1 a 
c (r ) = 

∫ 
e j k 1 ⊥ ·r ⊥ e j aK z (k 1 ⊥ ) z S 

1 a 0+ 
(k 1 ⊥ , k 0 s ⊥ ) · E 0 ( ̂  s ) d 

2 
k 1 ⊥ 

(54)

and 

K z (k 1 ⊥ ) = 

√ 

K 

2 − k 2 
1 ⊥ , k 1 ⊥ = | k 1 ⊥ | . (55)

2. The average dyadic Green’s function 

〈
G 

11 〉
V 

is given by 〈
G 

11 
(r , r ′ ) 

〉
V 

= G 

11 

K (r , r ′ ) = G K (r , r ′ ) + 

∑ 

a,b= ±
G 

1 a 1 b 

K (r , r ′ ) . (56)

In Eq. (56) , the dyadic Green’s function for an unbounded

medium G K is 

G K (r , r 1 ) = 

{
G 

+ 
K (r , r 1 ) z > z 1 , 

G 

−
K (r , r 1 ) z < z 1 , 

= 

∑ 

a = ±
G 

a 

K (r , r 1 ) δa, sgn (z−z 1 ) , (57)

with 

G 

a 

K (r , r 1 ) = 

j 

8 π2 

∫ 
e j k 1 ⊥ ·(r ⊥ −r 1 ⊥ ) e j aK z (k 1 ⊥ )(z−z 1 ) I 

a 

⊥ (k 1 ⊥ ) 
d 

2 
k 1 ⊥ 

K z (k 1 ⊥ ) 
, 

(58)

I 
a 

⊥ (k 1 ⊥ ) = 

∑ 

η= ϕ,θ

̂ η( ̂  k 

a 
1 ) � ̂ η( ̂  k 

a 
1 ) , (59)

and 

δa, sgn (z−z 1 ) = 

{
1 , a = sgn (z − z 1 ) 
0 , a 	 = sgn (z − z 1 ) 

, (60)

while the dyadic Green’s function G 

1 a 1 b 

K describing the reflec-

tions at the boundaries is 

G 

1 a 1 b 

K (r , r 1 ) = 

j 

8 π2 

∫ 
e j(k ⊥ ·r ⊥ −k 1 ⊥ ·r 1 ⊥ ) e j[ aK z (k ⊥ ) z−bK z (k 1 ⊥ ) z 1 ] 
× S 
1 a 1 b 

(k ⊥ , k 1 ⊥ ) 
d 

2 
k ⊥ d 

2 
k 1 ⊥ 

K z (k 1 ⊥ ) 
, (61)

with 

S 
1 a 1 b 

(k ⊥ , k 1 ⊥ ) = 

∑ 

η,μ= ϕ,θ

[ S 
1 a 1 b 

(k ⊥ , k 1 ⊥ )] ημ̂ η( ̂  k 

a ) � ̂ μ( ̂  k 

b 
1 ) . 

(62)

In Eq. (62) , the unit vector ̂  k 

a , which enters the expressions for̂ θ( ̂  k 

a ) and 

̂ ϕ ( ̂  k 

a ) , is computed as 

̂ k 

a = 

k 

a 

| k 

a | , k 

a = k ⊥ + aK 

′ 
z (k ⊥ ) ̂  z , a = ±, (63)

where 

K 

′ 
z = Re (K z ) and K 

′′ 
z = Im (K z ) . (64)

Similarly, the unit vector ̂ k 

a 
1 

is computed as ̂ k 

a = k 

a 
1 
/ | k 

a 
1 
| with

k 

a 
1 

= k 1 ⊥ + aK 

′ 
z (k 1 ⊥ ) ̂  z . Strictly speaking the expression of k 

a 

should involve K z and not its real part K 

′ 
z . The approximation

(63) implies that the unit vectors ̂ θ( ̂  k 

a ) and 

̂ ϕ ( ̂  k 

a ) are real,

and relies on the assumption that the contribution of evanes-

cent waves in the plane wave representation ( 61 ) is much smaller

than the contribution of propagating waves [10,11] . The neglect

of the evanescent waves which decay far from the sources and

boundaries, but can be significant in the near field, is equiva-

lent to the far-field approximation for the fields. At the present

moment, we use this approximation only when computing the

unit vectors ̂  θ( ̂  k 

a ) and 

̂ ϕ ( ̂  k 

a ) . 

Some properties of the scattering operators are summarized be-

ow [13,15] . 

1. In Eqs. (54) and (61) , the scattering operators S 
1 a 0+ 

and

S 
1 a 1 b 

correspond to a homogeneous layer with the effective

wavenumber K , and so they are averaged over volumetric fluc-

tuations. They can be computed by using the operators R 01 ,

T 10 , and R H21 , which describe the scattering by the lower and

the upper rough surface. Explicitly, we have 

S 
1+1+ = ( I 

1+1+ 
⊥ − R 01 R H21 ) 

−1 R 01 R H21 = R 01 S 
1 −1+ 

, (65)

S 
1+1 − = ( I 

1+1+ 
⊥ − R 01 R H21 ) 

−1 R 01 = R 01 ( I 
1 −1 −
⊥ + S 

1 −1 −
) , (66)

S 
1 −1+ = R H21 ( I 

1+1+ 
⊥ − R 01 R H21 ) 

−1 = R H21 ( I 
1+1+ 
⊥ + S 

1+1+ 
) , 

(67)

S 
1 −1 − = R H21 ( I 

1+1+ 
⊥ − R 01 R H21 ) 

−1 R 01 = R H21 S 
1+1 −

, (68)

and 

S 
1+0+ = ( I 

1+1+ 
⊥ − R 01 R H21 ) 

−1 T 10 , (69)

S 
1 −0+ = R H21 S 

1+0+ 
, (70)

where the dyadic projector I 
1 a 1 b 

⊥ , 

I 
1 a 1 b 

⊥ (k ⊥ , k 1 ⊥ ) = δ(k ⊥ − k 1 ⊥ )[ ̂  ϕ ( ̂  k 

a ) � ̂ ϕ ( ̂  k 

b ) + ̂

 θ( ̂  k 

a ) �̂ θ( ̂  k 

b )] ,

(71)

is the linear identity mapping from the space vector defined

by the basis ( ̂  ϕ ( ̂  k 

b ) , ̂  θ( ̂  k 

b )) onto the space vector defined by

the basis ( ̂  ϕ ( ̂  k 

a ) , ̂  θ( ̂  k 

a )) . Also note the relation connecting the

reflection operators corresponding to a rough surface centered

at the plane z = H and the plane z = 0 , 

j[ K z (k ⊥ )+ K z (k 1 ⊥ )] H 
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2. Any surface-averaged scattering dyadic operator is of the form〈
S (p ⊥ , p 1 ⊥ ) 

〉
S 

= δ(p ⊥ − p 1 ⊥ ) S (p ⊥ ) , (73)

while any surface-averaged dyadic correlation function of a

scattering operator is of the form 〈 
S 

(
p ⊥ + 

P ⊥ 
2 

, p 1 ⊥ + 

P 1 ⊥ 
2 

)
� S 

� 
(

p ⊥ − P ⊥ 
2 

, p 1 ⊥ − P 1 ⊥ 
2 

)〉 
S 

= δ(P ⊥ − P 1 ⊥ ) S (p ⊥ , p 1 ⊥ , P ⊥ ) . (74) 

If the illuminated surface has a finite area A , then

S (p ⊥ , p 1 ⊥ , P ⊥ ) is given by 

S (p ⊥ , p 1 ⊥ , P ⊥ ) 

= 

(2 π) 2 

A 

〈 
S 

(
p ⊥ + 

P ⊥ 
2 

, p 1 ⊥ + 

P ⊥ 
2 

)
� S 

� 
(

p ⊥ − P ⊥ 
2 

, p 1 ⊥ − P ⊥ 
2 

)〉 
S

(75) 

so that in the case P ⊥ = 0 , we have 

S (p ⊥ , p 1 ⊥ , 0) = 

(2 π) 2 

A 

〈
S (p ⊥ , p 1 ⊥ ) � S 

� 
(p ⊥ , p 1 ⊥ ) 

〉
S 
. (76)

To compute the effective wavenumber K we make the approx-

mation G 

11 

K ≈ G K . In this case, the effective wavenumber is that

f an unbounded discrete random medium, and in the framework

f the effective field approximation, K is computed as in Ref. [11] .

onsidering the representation of the dyadic Green’s function for a

ayer of discrete scatterers (cf. Eq. (56) ) G 

11 

K = G K + 

∑ 

a,b= ± G 

1 a 1 b 

K , it

s clear that the approximation G 

11 

K ≈ G K can be made if we neglect

ll boundary effects . For example, from Eq. (61) , we see that G 

1+1+ 
K 

s expressed in terms of S 
1+1+ 

, which in view of Eqs. (65) and (72) ,

ontains the factor 

 

j[ K z (k ⊥ )+ K z (k 1 ⊥ )] H = e j[ K 
′ 
z (k ⊥ )+ K ′ z (k 1 ⊥ )] H e - [ K 

′′ 
z (k ⊥ )+ K ′′ z (k 1 ⊥ )] H . 

his factor is negligible far away from the upper boundary when

he condition K 

′′ 
z H � 1 is satisfied, or equivalently, when the thick-

ess of the layer H is much larger than the mean free path l mp . 

.4. Integral equation for the dyadic correlation function 

The dyadic correlation function satisfies the Bethe–Salpeter

quation 

E 

1 (r ) � E 

1 � (r ′ ) 
〉
V 

= 

〈
E 

1 (r ) 
〉
V 

�

〈
E 

1 � (r ′ ) 
〉
V 

+ 

∫ 
D 1 

〈
G 

11 
(r , r 1 ) 

〉
V 

�

〈
G 

11 � 
(r ′ , r ′ 1 ) 

〉
V 

· I (r 1 , r 2 , r 
′ 
1 , r 

′ 
2 ) ·

〈
E 

1 (r 2 ) � E 

1 � (r ′ 2 ) 
〉
V 

d 

3 
r ′ 1 d 

3 
r ′ 2 d 

3 
r 1 d 

3 
r 2 . (77) 

n the ladder approximation for the Bethe–Salpeter equation, the

tetradic) scattering intensity operator in Eq. (77) is given by [2] 

 (r , r 1 , r 
′ , r ′ 1 ) = n 0 

∫ 
D 1 

T i (r , r 1 ) � T 

� 

i (r ′ , r ′ 1 ) d 

3 
R i , (78) 

here T i (r , r 1 ) is the transition operator for the i th particle cen-

ered at R i . 

Let us decompose the total field into a coherent and an inco-

erent component 

 

1 (r ) = 

〈
E 

1 (r ) 
〉
V 

+ E 1 (r ) , (79)

enote the dyadic correlation function and its diffuse and coherent

omponents by C , C and C c , respectively, i.e., 

 (r , r ′ ) = 

〈
E 

1 (r ) � E 

1 � (r ′ ) 
〉
V 
, (80) 

 (r , r ′ ) = 

〈
E 1 (r ) � E 1 � (r ′ ) 

〉
V , (81) 
 c (r , r ′ ) = 

〈
E 

1 (r ) 
〉
V 

�

〈
E 

1 � (r ′ ) 
〉
V 
. (82) 

nd note the following relationship between the dyadic correlation

unctions: 

 (r , r ′ ) = C c (r , r ′ ) + C (r , r ′ ) . (83)

urther on, defining the tetradic Green’s function by 

 (r , r 1 , r 
′ , r ′ 1 ) = 

〈
G 

11 
(r , r 1 ) 

〉
V 

�

〈
G 

11 � 
(r ′ , r ′ 1 ) 

〉
V 
, (84)

e express Eq. (77) as 

 (r , r ′ ) = 

∫ 
D 1 

G (r , r 1 , r 
′ , r ′ 1 ) · I (r 1 , r 2 , r 

′ 
1 , r 

′ 
2 ) 

· C (r 2 , r 
′ 
2 ) d 

3 
r ′ 1 d 

3 
r ′ 2 d 

3 
r 1 d 

3 
r 2 . (85) 

aking the average over surface fluctuations, and employing the

eak surface correlation approximation , according to which, G and

 are assumed to be weakly correlated on the rough surfaces, we

btain 

C (r , r ′ ) 
〉
S 

= 

∫ 
D 1 

〈
G (r , r 1 , r 

′ , r ′ 1 ) 
〉
S 
· I (r 1 , r 2 , r 

′ 
1 , r 

′ 
2 ) 

·
〈
C (r 2 , r 

′ 
2 ) 

〉
S 

d 

3 
r ′ 1 d 

3 
r ′ 2 d 

3 
r 1 d 

3 
r 2 , (86) 

here 

C (r , r ′ ) 
〉
S 

= 

〈
C c (r , r ′ ) 

〉
S 
+ 

〈
C (r , r ′ ) 

〉
S 
, (87) 

C c (r , r ′ ) 
〉
S 

= 

〈〈
E 

1 (r ) 
〉
V 

�

〈
E 

1 � (r ′ ) 
〉
V 

〉
S 
, (88) 

nd 

G (r , r 1 , r 
′ , r ′ 1 ) 

〉
S 
= 

〈〈
G 

11 
(r , r 1 ) 

〉
V 

�

〈
G 

11 � 
(r ′ , r ′ 1 ) 

〉
V 

〉
S 
, 

The next step is to apply the Wigner and the two-dimensional

ourier transform to the integral equation (86) . 

Wigner transform. The Wigner transform of a dyadic X (r , r ′ ) is
defined by 

X W 

(
r + r ′ 

2 

, p 

)
= 

∫ 
X (r , r ′ ) e −j p ·(r −r ′ ) d 

3 
(r − r ′ ) , (89)

and the inverse transform is 

X (r , r ′ ) = 

1 

(2 π) 3 

∫ 
X W 

(
r + r ′ 

2 

, p 

)
e j p ·(r −r ′ ) d 

3 
p . (90) 

For a tetradic X (r , r 1 , r 
′ , r ′ 1 ) , the direct and inverse Wigner

transforms are given, respectively, by 

X W 

(
r + r ′ 

2 

, p , 
r 1 + r ′ 1 

2 

, p 1 

)
= 

∫ 
e −j p ·(r −r ′ ) X (r , r 1 , r 

′ , r ′ 1 ) 

× e j p 1 ·(r 1 −r ′ 1 ) d 

3 
(r 1 − r ′ 1 ) d 

3 
(r − r ′ ) ,

(91) 

and 

X (r , r 1 , r 
′ , r ′ 1 ) = 

1 

(2 π) 6 

∫ 
e j p ·(r −r ′ ) X W 

(
r + r ′ 

2 

, p , 
r 1 + r ′ 1 

2 

, p 1 

)
× e −j p 1 ·(r 1 −r ′ 1 ) d 

3 
p 1 d 

3 
p . (92) 

Applying the Wigner transform to the integral

equation (86) under the assumption that for a layer

with a large geometrical thickness H , we can approximate ∫ 
D 1 

d 

3 
(r − r ′ ) = 

∫ H 

−H 

[ ∫ 
d 

2 
(r ⊥ − r ′ ⊥ ) 

] 
d (z − z ′ ) 

≈
∫ ∫ 

d 

2 
(r ⊥ − r ′ ⊥ ) d (z − z ′ ) , (93) 
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we obtain 

C W (R , p ) = 

1 

(2 π) 6 

∫ 
D 1 

[ ∫ 
G W (R , p , R 1 , p 1 ) · I W (R 1 , p 1 , R 2 , p 2 )

· C W (R 2 , p 2 ) d 

3 
p 1 d 

3 
p 2 

] 
d 

3 
R 1 d 

3 
R 2 , (94)

where R = (r + r ′ ) / 2 , R 1 = (r 1 + r ′ 
1 
) / 2 , and C W , C W , G W , and

I W are the Wigner transforms of 
〈
C 

〉
S 
, 
〈
C 

〉
S 
, 
〈
G 

〉
S 
, and I , re-

spectively, that is, 〈
C 

〉
S 

W � −→ C W , 
〈
C 

〉
S 

W � −→ C W , 
〈
G 

〉
S 

W � −→ G W , and I 
W � −→ I W . 

Note that in the Wigner-transform space, Eq. (87) becomes 

C W (R , p ) = C cW (R , p ) + C W (R , p ) . (95)

If the problem has translational invariance in azimuth, the

Wigner transform of the dyadic X (r , r ′ ) , where X stands for〈
C 

〉
S 
, 
〈
C c 

〉
S 
, or 

〈
C 

〉
S 
, is of the form 

X W (R , p ) = X W (Z, p ) , (96)

while the Wigner transform of the tetradic X (r , r 1 , r 
′ , r ′ 

1 
) ,

where X stands for 
〈
G 

〉
S 

or I , is of the form 

X W (R , p , R 1 , p 1 ) = X W (R ⊥ − R 1 ⊥ , Z, p , Z 1 , p 1 ) . (97)

Here, R = R ⊥ + Z ̂  z and R 1 = R 1 ⊥ + Z 1 ̂  z , and clearly, Z = (z +
z ′ ) / 2 and Z 1 = (z 1 + z ′ 1 ) / 2 . 

Fourier transform. The two-dimensional Fourier transform of a

dyadic X W (R , p ) = X W (R ⊥ , Z, p ) along the horizontal variable

R ⊥ is defined by 

X WF (Z, p , P ⊥ ) = 

∫ 
e −j R ⊥ ·P ⊥ X W (R ⊥ , Z, p ) d 

2 
R ⊥ ; (98)

the inverse transform is 

X W (R ⊥ , Z, p ) = 

1 

(2 π) 2 

∫ 
e j R ⊥ ·P ⊥ X WF (Z, p , P ⊥ ) d 

2 
P ⊥ . (99)

For a dyadic X W (R , p ) satisfying Eq. (96) , we have 

X WF (Z, p , P ⊥ ) = (2 π) 2 δ(P ⊥ ) X W (Z, p ) , (100)

while for a tetradic X W (R , p , R 1 , p 1 ) satisfying Eq. (97) , the

direct and inverse two-dimensional Fourier transforms along

the horizontal variable R ⊥ − R 1 ⊥ are given, respectively, by 

X WF (Z, p , Z 1 , p 1 , P ⊥ ) = 

∫ 
e −j(R ⊥ −R 1 ⊥ ) ·P ⊥ 

× X W (R ⊥ − R 1 ⊥ , Z, p , Z 1 , p 1 ) d 

2 
(R ⊥ − R 1 ⊥ ) (101)

and 

X W (R ⊥ − R 1 ⊥ , Z, p , Z 1 , p 1 ) = 

1 

(2 π) 2 

∫ 
e j(R ⊥ −R 1 ⊥ ) ·P ⊥ 

× X WF (Z, p , Z 1 , p 1 , P ⊥ ) d 

2 
P ⊥ . (102)

Applying the two-dimensional Fourier transform to the inte-

gral equation (94) , taking into account that the problem has

translational invariance in azimuth (the two-dimensional

Fourier transforms of C W and C W are as in Eq. (100) ), and

using the identity δ(P ⊥ ) f (P ⊥ ) = δ(P ⊥ ) f (0) , we obtain 

C W (Z, p ) = 

1 

(2 π) 6 

∫ H 

0 

[ ∫ 
G WF (Z, p , Z 1 , p 1 , 0) 

· I WF (Z 1 , p 1 , Z 2 , p 2 , 0) 

· C W (Z 2 , p 2 ) d 

3 
p 1 d 

3 
p 2 

] 
d Z 1 d Z 2 , (103)

where G WF and I WF are the two-dimensional Fourier trans-

forms of G W and I W , respectively, that is, 

F F 

G W � −→ G WF and I W � −→ I WF . 
In the following we will use the term Wigner–Fourier trans-

orm to designate the successive Wigner and Fourier transforms,

hat is, 

 

W � −→ X W 
F � −→ X WF 

def = X 

WF � −→ X WF , 

here X stands for 
〈
G 

〉
S 

or I . The integral equation (103) is

he starting point of our analysis. For its solution we must

etermine the Wigner transforms C W (Z, p ) and C W (Z, p ) , as

ell as the Wigner–Fourier transforms G WF (Z, p , Z 1 , p 1 , P ⊥ ) and

 WF (Z, p , Z 1 , p 1 , P ⊥ ) at P ⊥ = 0 . 

.5. Wigner and Wigner–Fourier transforms of the basic quantities 

In this section we evaluate the Wigner and Wigner–Fourier

ransforms of the basic quantities entering in the integral

quation (103) . 

.5.1. Tetradic Green’s function 

When computing the Wigner–Fourier transform of the tetradic

reen’s function G (r , r 1 , r 
′ , r ′ 1 ) , we exclude all cross terms. In fact,

aking into account that between two scattering events on the

ough surface the wave interacts with the particles, we assume

hat the scattering events on the rough surface are uncorrelated

14,16] . Thus, using (cf. Eqs. (56) , (57) , and (84) ) 

 (r , r 1 , r 
′ , r ′ 1 ) = 

〈
G 

11 
(r , r 1 ) 

〉
V 

�

〈
G 

11 � 
(r ′ , r ′ 1 ) 

〉
V 

≈
∑ 

a = ±
G 

a 

K (r , r 1 ) � G 

a� 

K (r ′ , r ′ 1 ) δa, sgn (z−z 1 ) δa, sgn (z ′ −z ′ 
1 
) 

+ 

∑ 

a,b= ±
G 

1 a 1 b 

K (r , r 1 ) � G 

1 a 1 b� 

K (r ′ , r ′ 1 ) , (104)

nd noting that ∑ 

a = ±
G 

a 

K (r , r 1 ) � G 

a� 

K (r ′ , r ′ 1 ) δa, sgn (z−z 1 ) δa, sgn (z ′ −z ′ 
1 
) 

= 

∑ 

a = ±
G 

a 

K (r , r 1 ) � G 

a� 

K (r ′ , r ′ 1 ) δa, sgn (Z−Z 1 ) , (105)

e obtain the Wigner–Fourier transform at P ⊥ = 0 : 

 WF (Z, p , Z 1 , p 1 , 0) = 

∑ 

a,b= ±
[ G 

ab 

KWF (Z, p , Z 1 , p 1 , 0) δab δa, sgn (Z−Z 1 ) 

+ G 

1 a 1 b 

KWF (Z, p , Z 1 , p 1 , 0)] , (106)

here 

 

ab 

KWF (Z, p , Z 1 , p 1 , 0) = 

(2 π2 ) 2 

| K z (p 1 ⊥ ) | 2 e 
−2 aK ′′ z (p ⊥ ) Z e 2 bK ′′ z (p 1 ⊥ ) Z 1 

× δ(p ⊥ − p 1 ⊥ ) δ(p z − aK 

′ 
z (p ⊥ )) 

× δ(p 1 z − bK 

′ 
z (p 1 ⊥ )) I 

aa 

⊥ (p ⊥ ) , (107)

 

aa 

⊥ (p ⊥ ) = I 
a 

⊥ (p ⊥ ) � I 
a 

⊥ (p ⊥ ) , (108)

 

a 

⊥ (p ⊥ ) = 

∑ 

η= ϕ,θ

̂ η( ̂  p 

a ) � ̂ η( ̂  p 

a ) , (109)

nd 

 

1 a 1 b 

KWF (Z, p , Z 1 , p 1 , 0) = 

(2 π2 ) 2 

| K z (p 1 ⊥ ) | 2 e 
−2 aK ′′ z (p ⊥ ) Z e 2 bK ′′ z (p 1 ⊥ ) Z 1 

× δ(p z − aK 

′ 
z (p ⊥ )) δ(p 1 z − bK 

′ 
z (p 1 ⊥ )) 

× S 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0) . (110)
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he tetradic S 

1 a 1 b 
(p ⊥ , p 1 ⊥ , 0) in Eq. (110) , possessing the dyadic-

roduct representation 

 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0) = 

∑ 

η,μ,η′ ,μ′ = ϕ,θ

[ S 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0)] ημη′ μ′ 

×̂ η( ̂  p 

a ) � ̂ μ( ̂  p 

b 
1 ) � ̂ η′ ( ̂  p 

a ) � ̂ μ′ ( ̂  p 

b 
1 ) , (111) 

s defined by (cf. Eq. (76) ) 

 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0) = 

(2 π) 2 

A 

〈
S 

1 a 1 b 
(p ⊥ , p 1 ⊥ ) � S 

1 a 1 b� 
(p ⊥ , p 1 ⊥ ) 

〉
S 
. 

(112) 

Note that during the derivation, the following representation for

he Wigner transform is obtained: 

 W (R , p , R 1 , p 1 ) = G W (R ⊥ − R 1 ⊥ , Z, p , Z 1 , p 1 ) ; (113) 

ence, G W (R , p , R 1 , p 1 ) has the property (97) , which reflects the

ranslational invariance in azimuth. 

.5.2. Scattering intensity operator 

Considering the integral representation of the scattering inten-

ity operator as given by Eq. (78) and using ( T i is a translational

yadic, i.e., T i (r , r ′ ) = T (r − R i , r 
′ − R i ) ) 

 ip (p , p 

′ ) = e −j p ·R i T p (p , p 

′ ) e j p ′ ·R i , (114)

here T ip (p , p 

′ ) is the Fourier transform of the transition operator

f particle i centered at R i , and T p (p , p 

′ ) is that of a particle cen-

ered at the origin of the coordinate system [11] , we find that the

igner transform of I (r , r 1 , r 
′ , r ′ 

1 
) is 

 W (R , p , R 1 , p 1 ) = 

n 0 

(2 π) 3 

∫ 
e j P ·(R −R 1 ) T p 

(
p + 

P 

2 

, p 1 + 

P 

2 

)
� T 

� 

p 

(
p − P 

2 

, p 1 − P 

2 

)
d 

3 
P . (115) 

y virtue of Eq. (115) , the tetradic I W (R , p , R 1 , p 1 ) has the property

97) , which states the translational invariance in azimuth. Further-

ore, the two-dimensional Fourier transform of I W (R , p , R 1 , p 1 ) at

 ⊥ = 0 computes as 

 WF (Z, p , Z 1 , p 1 , 0) = n 0 

∫ 
e j(Z−Z 1 ) P 1 z T p 

(
p + 

P 1 z ̂  z 

2 

, p 1 + 

P 1 z ̂  z 

2 

)
� T 

� 

p 

(
p − P 1 z ̂  z 

2 

, p 1 − P 1 z ̂  z 

2 

)
d P 1 z . (116) 

he integral representation (116) shows that the operator

 WF (Z, p , Z 1 , p 1 , 0) is non-local ( I WF 	 = 0 when Z 	 = Z 1 ), and that the

yadic T p is off-shell evaluated, since in general 

p + a 
P 1 z ̂  z 

2 

∣∣∣ 	 = 

∣∣∣p 1 + a 
P 1 z ̂  z 

2 

∣∣∣. 
o simplify the analysis, we use the on-shell approximation for the

yadic T p [14,17] 

 p 

(
p + a 

P 1 z ̂  z 

2 

, p 1 + a 
P 1 z ̂  z 

2 

)
≈ T p (p 

sgn (p z ) , p 

sgn (p 1 z ) 
1 

) , (117) 

here for p = p ⊥ + p z ̂  z and p 1 = p 1 ⊥ + p 1 z ̂  z , p 

sgn (p z ) and p 

sgn (p 1 z ) 
1 

tand, respectively, for 

p 

sgn (p z ) = p ⊥ + sgn (p z ) K 

′ 
z (p ⊥ ) ̂  z , 

 

sgn (p 1 z ) 
1 

= p 1 ⊥ + sgn (p 1 z ) K 

′ 
z (p 1 ⊥ ) ̂  z . 

y virtue of Eq. (117) , the operator I WF (Z, p , Z 1 , p 1 , 0) becomes lo-

alized ( I WF = 0 when Z 	 = Z 1 ), and we have 

 WF (Z, p , Z 1 , p 1 , 0) = n 0 δ(Z − Z 1 ) T p (p 

sgn (p z ) , p 

sgn (p 1 z ) 
1 

) 
� T 

� 

p (p 

sgn (p z ) , p 

sgn (p 1 z ) 
1 

) . (118) 

oreover, because of 
∣∣p 

sgn (p z ) 
∣∣ = 

∣∣p 

sgn (p 1 z ) 
1 

∣∣ ≈ K 

′ for K 

′ ′  K 

′ , the

yadic T p is on-shell evaluated. 

.5.3. Coherent dyadic correlation function 

As in the case of the tetradic Green’s function, the Wigner

ransform of the coherent dyadic correlation function is computed

y neglecting the correlations between the up-going and down-

oing coherent waves. Thus, by means of Eq. (53) , we have 

 c (r , r ′ ) = 

〈
E 

1 (r ) 
〉
V 

�

〈
E 

1 � (r ′ ) 
〉
V 

≈
∑ 

a = ±
C 

aa 

c (r , r ′ ) , (119) 

 

aa 

c (r , r ′ ) = E 

1 a 
c (r ) � E 

1 a� 
c (r ′ ) . (120) 

pplying the Wigner transform to 
〈
C c 

〉
S 
, and using the dyadic iden-

ity 

( A · c ) � ( B · d ) = ( A � B ) · (c � d ) , (121)

e obtain 

 cW (R , p ) = C cW (Z, p ) , (122)

ith 

 cw (Z, p ) = (2 π) 3 
∑ 

a = ±
δ(p z − aK 

′ 
z (p ⊥ )) C 

aa 

c (Z, p ⊥ ) , (123) 

 

aa 

c (Z, p ⊥ ) = e −2 aK ′′ z (p ⊥ ) Z S 

1 a 0+ 
(p ⊥ , k 0 s ⊥ , 0) · C 0 ( ̂  s ) . (124) 

n agreement with Eq. (96) , Eq. (122) shows that the prob-

em is translationally invariant in azimuth. In Eq. (124) , C 0 ( ̂  s ) =
 0 ( ̂  s ) � E � 0 ( ̂  s ) , and the tetradic S 

1 a 0+ 
(p ⊥ , k 0 s ⊥ , 0) is defined by (cf.

q. (76) ) 

 

1 a 0+ 
(p ⊥ , k 0 s ⊥ , 0) 

= 

(2 π) 2 

A 

〈
S 

1 a 0+ 
(p ⊥ , k 0 s ⊥ ) � S 

1 a 0+ � 
(p ⊥ , k 0 s ⊥ ) 

〉
S 
. (125) 

Some properties of the dyadic C 

aa 

c (Z, p ⊥ ) are listed below. 

1. From Eqs. (124) and (125) , we see that C 

aa 

c (Z, p ⊥ ) is transverse,

that is, 

C 

aa 

c (Z, p ⊥ ) = 

∑ 

η,μ= ϕ,θ

[ C 

aa 

c (Z, p ⊥ )] ημ̂ η( ̂  p 

a ) � ̂ μ( ̂  p 

a ) , (126) 

with p 

a = p ⊥ + aK 

′ 
z (p ⊥ ) ̂  z . 

2. The Z -dependence of C 

aa 

c (Z, p ⊥ ) can be determined explicitly.

From Eqs. (124) and (125) , together with Eqs. (69) , (70) , and

(72) , we find 

C 

++ 
c (Z, p ⊥ ) ∝ T + (Z, H) = e −2 K ′′ z (p ⊥ ) Z , (127)

and 

C 

−−
c (Z, p ⊥ ) ∝ T −(Z, H) = e −2 K ′′ z (k 0 s ⊥ ) H e −2 K ′′ z (p ⊥ )(H−Z) . (128)

The latter follows from 

S 
1 −0+ 

(p ⊥ , k 0 s ⊥ ) ∝ e j[ K z (p ⊥ )+ K z (k 0 s ⊥ )] H , (129) 

which gives 

[ S 

1 −0+ 
(p ⊥ , k 0 s ⊥ , 0)] ημη′ μ′ ∝ e −2 K ′′ z (p ⊥ ) H e −2 K ′′ z (k 0 s ⊥ ) H . (130)

The transmission function T + (Z, H) describes the attenuation

of the up-going coherent field through the medium, while the

transmission function T −(Z, H) describes the attenuation of the

down-going coherent field, which first propagates through the

layer and is then reflected at the upper boundary. 
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C (Z, p ⊥ ) = C c (Z, p ⊥ ) + C (Z, p ⊥ ) . (150) 
3. From Eq. (124) , it follows that C 

aa 

c (Z, p ⊥ ) satisfies the differen-

tial equation 

∂ 

∂Z 
C 

aa 

c (Z, p ⊥ ) = −2 aK 

′′ 
z (p ⊥ ) C 

aa 

c (Z, p ⊥ ) . (131)

Setting Z = H in Eq. (124) gives 

C 

++ 
c (H, p ⊥ ) = e −2 K ′′ z (p ⊥ ) H S 

1+0+ 
(p ⊥ , k 0 s ⊥ , 0) · C 0 ( ̂  s ) , (132)

C 

−−
c (H, p ⊥ ) = e 2 K 

′′ 
z (p ⊥ ) H S 

1 −0+ 
(p ⊥ , k 0 s ⊥ , 0) · C 0 ( ̂  s ) . (133)

Then, using Eqs. (70) , (72) , and (125) we find the boundary con-

dition 

C 

−−
c (H, p ⊥ ) = 

∫ 
R 21 (p ⊥ , p 1 ⊥ , 0) · C 

++ 
c (H, p 1 ⊥ ) d 

2 
p 1 ⊥ (134)

at Z = H, where the tetradic reflection operator R 21 (p ⊥ , p 1 ⊥ , 0)

is defined by 

R 21 (p ⊥ , p 1 ⊥ , 0) = 

(2 π) 2 

A 

〈
R 21 (p ⊥ , p 1 ⊥ ) � R 

� 

21 (p ⊥ , p 1 ⊥ ) 
〉
S 
. 

(135)

2.5.4. Diffuse dyadic correlation function 

The diffuse dyadic correlation function is the key quantity in

our analysis and for this reason it deserves more attention. First,

we observe that the tetradic G WF can be written as 

G WF (Z, p , Z 1 , p 1 , 0) = (2 π) 4 
∑ 

a = ±
δ(p z − aK 

′ 
z (p ⊥ )) 

× G 

aa 

(Z, p ⊥ , Z 1 , p 1 , 0) , (136)

where the expression of G 

aa 
(Z, p ⊥ , Z 1 , p 1 , 0) follows from

Eqs. (106) , (107) , and (110) . Inserting Eq. (136) in Eq. (103) ,

we infer that C W (Z, p ) can be expressed as 

C W (Z, p ) = (2 π) 3 
∑ 

a = ±
δ(p z − aK 

′ 
z (p ⊥ )) C 

aa 
(Z, p ⊥ ) , (137)

where the transverse component C 

aa 
(Z, p ⊥ ) is given by 

C 

aa 
(Z, p ⊥ ) = 

1 

(2 π) 5 

∫ H 

0 

[ ∫ 
G 

aa 

(Z, p ⊥ , Z 1 , p 1 , 0) 

· I WF (Z 1 , p 1 , Z 2 , p 2 , 0) · C W (Z 2 , p 2 ) d 

3 
p 1 d 

3 
p 2 

] 
d Z 1 d Z 2 . 

(138)

Hereafter, we give a physical interpretation of the Wigner trans-

form of the diffuse dyadic correlation function, and in particular of

its transverse component. We employ the same analysis as in Ref.

[10,11] with the aim to recover the representation (137) . Let us de-

compose the diffuse field into a spectrum of up-going and down-

going waves 

E 1 (r ) = 

∫ [ 
E 1 + (z, k ⊥ ) e j K z (k ⊥ ) z + E 1 −(z, k ⊥ ) e −j K z (k ⊥ ) z 

] 
× e j k ⊥ ·r ⊥ d 

2 
k ⊥ , (139)

with 

E 1 a (z, k ⊥ ) = E 1 aϕ (z, k ⊥ ) ̂ ϕ ( ̂  k 

a ) + E 1 aθ (z, k ⊥ ) ̂ θ( ̂  k 

a ) , (140)

for k 

a = k ⊥ + aK 

′ 
z (k ⊥ ) ̂  z . In Eq. (139) , E 1 + (z, k ⊥ ) is the incoherent

envelope amplitude of the up-going waves with transverse wave

vector k ⊥ , while E 1 −(z, k ⊥ ) is the corresponding incoherent enve-

lope amplitude of the down-going waves. The z -dependence re-

tained in E 1 a (z, k ⊥ ) is the mean free path scale l mp ( z ≈ l mp ). The
yadic correlation functions for the envelope amplitudes are as-

umed to be of the form 

E 1 a (z, k ⊥ ) � E 1 � b (z ′ , k 

′ 
⊥ ) 

〉
V 

= δ(k ⊥ − k 

′ 
⊥ ) �ab (Z, k ⊥ ) , a, b = ±, 

(141)

here as usual, Z = (z + z ′ ) / 2 . This means that (i) �ab varies only

ith respect to Z on the mean free path scale l mp and not with re-

pect to z − z ′ , which is on the wavelength scale λe ; (ii) the fields

ith the same k ⊥ are correlated, while the fields with different

 ⊥ are uncorrelated; and (iii) the correlations due to the reflecting

oundaries of the up-going and down-going waves are represented

y �a −a . From Eqs. (139) and (141) , we find the following expres-

ion for the diffuse dyadic correlation function: 

 (r , r ′ ) = 

∫ 
�(Z, k ⊥ ) e j k ⊥ ·(r ⊥ −r ′ ⊥ ) d 

2 
k ⊥ , (142)

here 

(Z, k ⊥ ) = 

∑ 

a = ±
�a (Z, k ⊥ ) e j a [ K z (k ⊥ ) z−K � z (k ⊥ ) z ′ ] . 

+ 

∑ 

a = ±
�a −a (Z, k ⊥ ) e j a [ K z (k ⊥ ) z+ K � z (k ⊥ ) z ′ ] . (143)

urther on, neglecting the correlations due to the reflecting bound-

ries, i.e., neglecting the dyadics �a −a (Z, k ⊥ ) in Eq. (143) , we get 

 (r , r ′ ) = 

∑ 

a = ±

∫ 
�aa (Z, k ⊥ ) e −2 aK ′′ z (k ⊥ ) Z 

× e j aK ′ z (k ⊥ )(z−z ′ ) e j k ⊥ ·(r ⊥ −r ′ ⊥ ) d 

2 
k ⊥ . (144)

or 
〈
C (r , r ′ ) 

〉
S 

we assume a similar representation, with say,

aa (Z, k ⊥ ) in place of �aa (Z, k ⊥ ) . Then, by straightforward calcu-

ations, we find that the Wigner transform of 
〈
C (r , r ′ ) 

〉
S 

is of the

orm 

 W (R , p ) = C W (Z, p ) , (145)

ith 

 W (Z, p ) = (2 π) 3 
∑ 

a = ±
δ(p z − aK 

′ 
z (p ⊥ )) C 

aa 
(Z, p ⊥ ) , (146)

 

aa 
(Z, p ⊥ ) = e −2 aK ′′ z (p ⊥ ) Z Λaa (Z, p ⊥ ) . (147)

hus, both representations for C W (Z, p ) , i.e., (137) and (146) , are

dentical. Except for the transmission factor exp [ −2 aK 

′′ 
z (p ⊥ ) Z] , the

ransverse ( p ⊥ -) components of the Wigner transform C W (Z, p ) ,

 

aa 
(Z, p ⊥ ) coincide with the dyadic correlation functions for the

incoherent) envelope amplitudes Λaa (Z, p ⊥ ) . Some comments can

e made here. 

1. Eq. (145) shows that the problem has translational invariance

in azimuth . 

2. Owing to Eqs. (140) , (141) , and (147) , C 

aa 
(Z, p ⊥ ) is a transverse

dyadic, i.e., 

C 

aa 
(Z, p ⊥ ) = 

∑ 

η,μ= ϕ,θ

[ C 

aa 
(Z, p ⊥ )] ημ̂ η( ̂  p 

a ) � ̂ μ( ̂  p 

a ) . (148)

3. The representations (123) and (146) of the Wigner transforms

C cW (Z, p ) and C W (Z, p ) , respectively, are of the same type.

Therefore, the Wigner transform of the (total) dyadic correla-

tion function inherits this representation type; it is given by 

C W (Z, p ) = C cW (Z, p ) + C W (Z, p ) 

= (2 π) 3 
∑ 

a = ±
δ(p z − aK 

′ 
z (p ⊥ )) C 

aa 
(Z, p ⊥ ) , (149)

where 
aa aa aa 
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In summary, when all cross terms in the expression of the

etradic Green’s function G (r , r 1 , r 
′ , r ′ 

1 
) are excluded, the integral

quation (103) , derived under the effective field approximation,

mplies that the Wigner transform C W (Z, p ) 

1. includes only the uncrossed dyadics C 

aa 
(Z, p ⊥ ) , and 

2. depends on p z through the Dirac delta function δ(p z −
aK 

′ 
z (p ⊥ )) . 

In the above framework, these results can be explained as fol-

ows. 

1. If in Eq. (143) we disregard the dyadic correlation functions for

the envelope amplitudes Λa −a (z, z ′ , k ⊥ ) then C W (Z, p ) will in-

clude only the uncrossed dyadics C 

aa 
(Z, p ⊥ ) ; the cross dyadics

C 

a −a 
(Z, p ⊥ ) corresponding to Λa −a (z, z ′ , k ⊥ ) are excluded. 

2. By virtue of the assumption (141) , which is similar to the quasi-

uniform field approximation, C W (Z, p ) depends on p z through

the Dirac delta function δ(p z − aK 

′ 
z (p ⊥ )) . In fact, the represen-

tation (149) of the Wigner transform of the dyadic correlation

function is equivalent to the representation (2) in the quasi-

uniform field approximation. 

.6. Radiative transfer equation 

The radiative transfer equation will be formulated for

 

aa 
(Z, p ⊥ ) , which are the upward and downward transverse

omponents of the Wigner transform C W (Z, p ) . 

.6.1. Integral and differential forms of the radiative transfer equation 

Inserting Eqs. (106) , (107), (110) , and (118) on one hand and

qs. (123) and (146) on the other hand in Eq. (103) , and tracing

p-going and down-going waves, we obtain the following integral

orm of the radiative transfer equation: 

 

aa 
(Z, p ⊥ ) 

= 

n 0 

16 π2 
e −2 aK ′′ z (p ⊥ ) Z 

∑ 

b,c= ±

∫ H 

0 

{ 

∫ 
1 

| K z (p 1 ⊥ ) | 2 e 
2 bK ′′ z (p 1 ⊥ ) Z 1 

× [ S 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0) + δab δa, sgn (Z−Z 1 ) δ(p ⊥ − p 1 ⊥ ) I 
ab 

⊥ (p ⊥ )] 

· T 

bc 

pT (p 1 ⊥ , p 2 ⊥ ) · [ C 

cc 

c (Z 1 , p 2 ⊥ ) + C 

cc 
(Z 1 , p 2 ⊥ )] d 

2 
p 1 ⊥ d 

2 
p 2 ⊥ 

} 

d Z 1 , 

(151) 

here 

 

bc 

pT (p 1 ⊥ , p 2 ⊥ ) = T pT (p 

b 
1 , p 

c 
2 ) � T 

� 

pT (p 

b 
1 , p 

c 
2 ) . (152)

ome comments in connection with the derivation of the integral

quation (151) are in order. 

1. In Eq. (103) , the Dirac delta functions δ(p 1 z − bK 

′ 
z (p 1 ⊥ )) and

δ(p 2 z − cK 

′ 
z (p 2 ⊥ )) appearing in the expressions for G WF (·, p 1 , ·)

and C W (·, p 2 ) , respectively, yield sgn (p 1 z ) = b and sgn (p 2 z ) = c;

therefore, in Eq. (118) , we have p 

sgn (p 1 z ) 
1 

= p 

b 
1 

and p 

sgn (p 2 z ) 
2 

= p 

c 
2 
,

and so, 

T p (p 

sgn (p 1 z ) 
1 

, p 

sgn (p 2 z ) 
2 

) � T 

� 

p (p 

sgn (p 1 z ) 
1 

, p 

sgn (p 2 z ) 
2 

) 

= T p (p 

b 
1 , p 

c 
2 ) � T 

� 

p (p 

b 
1 , p 

c 
2 ) . (153) 

2. If X is the dyadic X = 

∑ 

i j X i j ̂  e i �̂ e j , then the computation rule

[( ̂  e i �̂ e j ) � ( ̂  e k �̂ e l )] · ( ̂  e j ′ �̂ e l ′ ) = ( ̂  e j ·̂ e j ′ )( ̂  e l ·̂ e l ′ ) ̂  e i �̂ e k , 

(154) 

C

gives (cf. Eq. (111) ) 

S 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0) · X = 

∑ 

η,μ,η′ ,μ′ = ϕ,θ

∑ 

i j 

[ S 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0)] ημη′ μ′ 

× X i j [ ̂  μ( ̂  p 

b 
1 ) ·̂ e i ][ ̂  μ′ ( ̂  p 

b 
1 ) ·̂ e j ] ̂  η( ̂  p 

a ) � ̂ η′ ( ̂  p 

a ) . (155) 

Thus, S 

1 a 1 b 
(p ⊥ , p 1 ⊥ , 0) · X is a transverse dyadic, and the same

result is valid for the dyadic I 
ab 

⊥ (p ⊥ ) · X . Consequently, from

the integral equation (151) , we deduce that C 

aa 
(Z, p ⊥ ) is also

a transverse dyadic as in Eq. (148) . Thus, the transversality of

C 

aa 
(Z, p ⊥ ) may follow directly from the integral Eq. (151) . 

3. Using the computation rule (154) , and taking into account that 

S 

1 a 1 b 
(p ⊥ , p 1 ⊥ , 0) and I 

ab 

⊥ (p ⊥ ) are transverse tetradics, and that

C 

cc 

c (Z 1 , p 2 ⊥ ) and C 

cc 
(Z 1 , p 2 ⊥ ) are transverse dyadics, we find,

for example, that 

S 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0) · [ T p (p 

b 
1 , p 

c 
2 ) � T 

� 

p (p 

b 
1 , p 

c 
2 )] · C 

cc 

c (Z 1 , p 2 ⊥ ) 

= [ S 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0) · I 
bb 

⊥ (p 1 ⊥ )] 

· [ T p (p 

b 
1 , p 

c 
2 ) � T 

� 

p (p 

b 
1 , p 

c 
2 )] · [ I 

cc 

⊥ (p 2 ⊥ ) · C 

cc 

c (Z 1 , p 2 ⊥ )] 

= S 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0) · T 

bc 

pT (p 1 ⊥ , p 2 ⊥ ) · C 

cc 

c (Z 1 , p 2 ⊥ ) , (156) 

where, be means of the dyadic identity 

( A � B ) · ( C � D ) = ( A · C ) � ( B · D ) , (157)

T 
bc 

pT (p 1 ⊥ , p 2 ⊥ ) is given by (cf. Eq. (152) ) 

T 

bc 

pT (p 1 ⊥ , p 2 ⊥ ) = I 
bb 

⊥ (p 1 ⊥ ) · [ T p (p 

b 
1 , p 

c 
2 ) � T 

� 

p (p 

b 
1 , p 

c 
2 )] · I 

cc 

⊥ (p 2 ⊥ ) 

= [ I 
b 

⊥ (p 1 ⊥ ) · T p (p 

b 
1 , p 

c 
2 ) · I 

c 

⊥ (p 2 ⊥ )] 

� [ I 
b 

⊥ (p 1 ⊥ ) · T 

� 

p (p 

b 
1 , p 

c 
2 ) · I 

c 

⊥ (p 2 ⊥ )] 

= T pT (p 

b 
1 , p 

c 
2 ) � T 

� 

pT (p 

b 
1 , p 

c 
2 ) . (158) 

Taking the derivative of Eq. (151) and using 

a, sgn (Z−Z 1 ) = δa + H(Z − Z 1 ) + δa −H(Z 1 − Z) , 

d H(Z) 

d Z 
= δ(Z) , 

hich gives 

d 

d Z 

∫ H 

0 

f (Z 1 ) δa, sgn (Z−Z 1 ) d Z 1 

= 

∫ H 

0 

f (Z 1 )[ δa + δ(Z − Z 1 ) − δa −δ(Z 1 − Z)] d Z 1 

= a f (Z) , 

here H ( Z ) is the Heaviside step-function, we obtain the differen-

ial form of the radiative transfer equation: 

∂ 

∂Z 
C 

aa 
(Z, p ⊥ ) 

= −2 aK 

′′ 
z (p ⊥ ) C 

aa 
(Z, p ⊥ ) + 

a 

16 π2 

n 0 

| K z (p ⊥ ) | 2 
×

∑ 

b= ±

∫ 
T 

ab 

pT (p ⊥ , p 1 ⊥ ) · [ C 

bb 

c (Z, p 1 ⊥ ) + C 

bb 
(Z, p 1 ⊥ )] d 

2 
p 1 ⊥ . (159) 

ote that in deriving Eq. (159) , we used the result 

 

aa 

⊥ (p ⊥ ) · T 

ab 

pT (p ⊥ , p 1 ⊥ ) = T 

ab 

pT (p ⊥ , p 1 ⊥ ) , 

hich follows from the dyadic identity (157) . The differential

q. (159) is complemented with the boundary conditions 

 

++ 
(0 , p ⊥ ) = 

∫ 
R 01 (p ⊥ , p 1 ⊥ , 0) · C 

−−
(0 , p 1 ⊥ ) d 

2 
p 1 ⊥ (160) 
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A  
at Z = 0 , and 

C 

−−
(H, p ⊥ ) = 

∫ 
R 21 (p ⊥ , p 1 ⊥ , 0) · C 

++ 
(H, p 1 ⊥ ) d 

2 
p 1 ⊥ (161)

at Z = H. Here, the tetradic reflection operator R 01 (p ⊥ , p 1 ⊥ , 0) at

the lower boundary is defined by 

R 01 (p ⊥ , p 1 ⊥ , 0) = 

(2 π) 2 

A 

〈
R 01 (p ⊥ , p 1 ⊥ ) � R 

� 

01 (p ⊥ , p 1 ⊥ ) 
〉
S 
, (162)

while the tetradic reflection operator R 21 (p ⊥ , p 1 ⊥ , P ⊥ ) at the up-

per boundary is defined as in Eq. (135) . The boundary conditions

(160) and (161) are derived under the so-called weak surface corre-

lation approximation discussed in Appendix 1 . 

2.6.2. Conventional radiative transfer equation 

The conventional radiative transfer equation will be formulated

for the transverse components C 

aa 
(Z, p ⊥ ) of the Wigner transform

of the (total) dyadic correlation function C W (Z, p ) . By making use of

Eqs. (131) and (150) , we express the radiative transfer Eq. (159) in

terms of C 

aa 
(Z, p ⊥ ) as 

∂ 

∂Z 
C 

aa 
(Z, p ⊥ ) = −2 aK 

′′ 
z (p ⊥ ) C 

aa 
(Z, p ⊥ ) + 

a 

16 π2 

n 0 

| K z (p ⊥ ) | 2 
×

∑ 

b= ±

∫ 
T 

ab 

pT (p ⊥ , p 1 ⊥ ) · C 

bb 
(Z, p 1 ⊥ ) d 

2 
p 1 ⊥ . (163)

Then we proceed as follows. 

1. We assume that K 

′ ′  K 

′ , yielding K ≈ K 

′ , and neglect the

evanescent waves, i.e., | p ⊥ | = p ⊥ ≤ K 

′ . Recall that the disregard

of the evanescent waves is equivalent to the far-field approxi-

mation for the fields. In this context, we define the real upward

( a = + ) and downward ( a = −) vectors for propagating waves

by 

p 

a = p ⊥ + aK 

′ 
z (p ⊥ ) ̂  z , (164)

K 

′ 
z (p ⊥ ) = 

√ 

K 

′ 2 − p 2 ⊥ . (165)

Obviously, p 

a is a real vector whose norm is exactly K 

′ , i.e.,

| p 

a | = K 

′ . Also note that only under the assumption K 

′ ′  K 

′ ,
the new definition K 

′ 
z (p ⊥ ) = 

√ 

K 

′ 2 − p 2 ⊥ agrees with the previ-

ous one K 

′ 
z (p ⊥ ) = Re ( 

√ 

K 

2 − p 2 ⊥ ) . Putting 

K 

′ ̂ p 

a = p ⊥ + aK 

′ 
z (p ⊥ ) ̂  z , (166)

we describe up-going and down-going propagating waves

through the (normalized) direction ̂

 p = ̂

 p (θ, ϕ) , with ̂

 p = ̂

 p x ̂  x +̂ p y ̂  y + ̂

 p z ̂  z and 

̂ p x = sin θ cos ϕ, ̂ p y = sin θ sin ϕ, ̂ p z = cos θ, (167)

as follows: 

̂ p 

+ = ̂

 p (θ, ϕ) , θ ∈ [0 , π/ 2) , ϕ ∈ [0 , 2 π ] , (168)

̂ p 

− = ̂

 p (θ, ϕ) , θ ∈ (π/ 2 , π ] , ϕ ∈ [0 , 2 π ] . (169)

Thus, the polar angle θ specifies if a wave is up-going or down-

going. Noting that p ⊥ = K 

′ ( ̂  p x ̂  x + ̂

 p y ̂  y ) , we find 

d 

2 
p ⊥ = K 

′ 2 sin θ
∣∣cos θ

∣∣ d θd ϕ, (170)

K 

′ 
z (p ⊥ ) = K 

′ ̂ p z = K 

′ ∣∣cos θ
∣∣, (171)

and so, 

d 

2 
p ⊥ = sin θ d θd ϕ = d 

2 ̂ p . 

K 

′ K 

′ 
z (p ⊥ ) 
2. For small K 

′ ′ , we use the first-order Taylor expansion 

K z (p ⊥ ) = K 

′ 
z (p ⊥ ) + j 

K 

′ K 

′′ 
K 

′ 
z (p ⊥ ) 

, (172)

to approximate 

K 

′′ 
z (p ⊥ ) = 

1 

2 j 
[ K z (p ⊥ ) − K 

� 
z (p ⊥ )] ≈ K 

′ K 

′′ 
K 

′ 
z (p ⊥ ) 

= 

K 

′′ ∣∣cos θ
∣∣ . (173)

3. We introduce the specific dyadic correlation function �(Z, ̂  p 

a )

through the relation 

�(Z, ̂  p 

a ) = C 

aa 
(Z, p ⊥ ) K 

′ K 

′ 
z (p ⊥ ) = C 

aa 
(Z, p ⊥ ) K 

′ 2 ∣∣cos θ
∣∣. (174)

In using Eq. (149) , the inverse Wigner transform gives 

C (r , r ′ ) = 

1 

(2 π) 3 

∫ 
C W 

(
r + r ′ 

2 

, p 

)
e j p ·(r −r ′ ) d 

3 
p 

= 

∑ 

a = ±

∫ 
C 

aa 
(Z, p ⊥ ) e j aK ′ z (p ⊥ )(z−z ′ ) e j p ⊥ ·(r ⊥ −r ′ ⊥ ) d 

2 
p ⊥ . (175)

Substituting Eq. (174) in Eq. (175) and neglecting evanes-

cent waves, that is, for K 

′ 
z (p ⊥ ) as in Eq. (165) and 

∫ 
d 

2 p ⊥ =∫ 
p ⊥ ≤K ′ d 

2 p ⊥ , we obtain 

C (r , r ′ ) = 

∑ 

a = ±

∫ 
Ωa 

�(Z, ̂  p 

a ) e j K 
′ ̂ p a ·(r −r ′ ) d 

2 ̂ p 

= 

∫ 
�(Z, ̂  p ) e j K 

′ ̂ p ·(r −r ′ ) d 

2 ̂ p , (176)

where Ω+ and Ω− are the upper and the lower hemisphere. 

The radiative transfer equation for the specific dyadic correla-

ion function �(Z, ̂  p ) , expressed in dyadic-product representation

s 

(Z, ̂  p ) = 

∑ 

η,μ= ϕ,θ

[ �(Z, ̂  p )] ημ̂ η( ̂  p ) � ̂ μ( ̂  p ) , (177)

ith ̂

 p = ̂

 p (θ, ϕ) , is then 

os θ
∂ 

∂Z 
�(Z, ̂  p ) = −2 K 

′′ �(Z, ̂  p ) 

+ n 0 

∫ 
[ A ( ̂  p , ̂  p 1 ) � A 

� 
( ̂  p , ̂  p 1 )] · �(z, ̂  p 1 ) d 

2 ̂ p 1 . 

(178)

n obtaining Eq. (178) , we used the relation between the trans-

erse component of the Fourier transform of the transition oper-

tor T pT and the far-field scattering dyadic A , i.e., T pT (K 

′ ̂ p , K 

′ ̂ p 1 ) =
 πA ( ̂  p , ̂  p 1 ) , giving 

 

ab 

pT (p ⊥ , p 1 ⊥ ) = T pT (K 

′ ̂ p 

a , K 

′ ̂ p 

b 
1 ) � T 

� 

pT (K 

′ ̂ p 

a , K 

′ ̂ p 

b 
1 ) 

= 16 π2 [ A ( ̂  p 

a , ̂  p 

b 
1 ) � A 

� 
( ̂  p 

a , ̂  p 

b 
1 )] . 

s compared to Eq. (159) , the radiative transfer Eq. (178) has been

erived by further assuming that K 

′ ′  K 

′ and by neglecting the

vanescent waves. 

In the case r = r ′ , the dyadic correlation function C (r , r ′ ) is the

oherency dyadic C (r ) , and the specific dyadic correlation func-

ion �(Z, ̂  p ) is the specific coherency dyadic �(z, ̂  p ) , so that (cf.

q. (176) with r = r ′ ) 

 (r ) = 

∫ 
�(z, ̂  p ) d 

2 ̂ p . (179)

ecause, Z = z = z ′ , the radiative transfer equation for the specific

oherency dyadic is as in Eq. (178) , but with Z replaced by z .

utting 

 ( ̂  p , ̂  p 1 ) = 

∑ 

η,μ= ϕ,θ

[ S ( ̂  p , ̂  p 1 )] ημ̂ η( ̂  p ) � ̂ μ( ̂  p 1 ) , (180)
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here S ( ̂  p , ̂  p 1 ) is the amplitude matrix for the incident and scat-

ering directions ̂  p 1 and ̂

 p , respectively, and using the computation

ule (154) , we obtain the following radiative transfer equation for

he specific coherency dyadic: 

os θ
∂ 

∂z 
[ �(z, ̂  p )] ημ = −2 K 

′′ [ �(z, ̂  p )] ημ

+ n 0 

∑ 

η′ ,μ′ = ϕ,θ

∫ 
[ S ( ̂  p , ̂  p 1 )] ηη′ [ S � ( ̂  p , ̂  p 1 )] μμ′ 

× [ �(z, ̂  p 1 )] η′ μ′ d 

2 ̂ p 1 . (181) 

To derive the radiative transfer equations for the specific co-

erency column vector, we first note that for spherical particles,

 − K 

� = 

2 π

k 1 
n 0 

[
S(0) − S � (0) 

]
= j n 0 C ext , (182)

here S(0) 
def = [ S ( ̂  s , ̂  s )] θθ = [ S ( ̂  s , ̂  s )] ϕϕ , S ( ̂  s , ̂  s ) is the amplitude ma-

rix in the forward direction, and C ext is the extinction cross sec-

ion. Hence, 2 K 

′′ = n 0 C ext . Let us define the multiindex ν = (η, μ) ,

uch that ν takes the values ν = 1 , 2 , 3 , 4 for (η, μ) = (θ, θ ) , ( θ ,

 ), ( ϕ , θ ), ( ϕ , ϕ ). Then, in terms of the specific coherency column

ector 

 J (z, ̂  p )] (η,μ) = 

1 

2 

√ 

ε 1 
μ0 

[ �(z, ̂  p )] ημ, (183)

he radiative transfer Eq. (181) becomes 

os θ
d J (z, ̂  p ) 

d z 
= −n 0 K J J (z, ̂  p ) 

+ n 0 

∫ 
Z J ( ̂  p , ̂  p 1 ) J (z, ̂  p 1 ) d 

2 ̂ p 1 . (184) 

ere, the coherency extinction matrix is 

 J = C ext I 4 , (185)

here I 4 is the four-by-four identity matrix, while the coherency

hase matrix is 

 Z J ( ̂  p , ̂  p 1 )] (η,μ)(η′ ,μ′ ) = [ S ( ̂  p , ̂  p 1 )] ηη′ [ S � ( ̂  p , ̂  p 1 )] μμ′ . (186)

. Conclusions 

Following Ref. [16] as a template, we summarize below the as-

umptions under which the radiative transfer equation (159) has

een derived. 

A1. The fluctuations of the discrete random medium and the

rough surfaces are assumed to be statistical independent and

homogeneous . On average, the problem is translationally in-

variant and isotropic in azimuth. The fact that the problem

has translational invariance in azimuth is reflected by the

properties (96) and (97) . By direct calculations, it has been

shown that these properties are satisfied. 

A2. By means of the effective field approximation , the coherent

field and the average dyadic Green’s function of the discrete

random layer correspond to a homogeneous layer character-

ized by the effective wavenumber. The effective wavenum-

ber is computed by neglecting boundary effects . Under the as-

sumption that the layer thickness is greater than the mean

free path, the effective wavenumber is that of an unbounded

discrete random medium. 

A3. In computing the Wigner transforms of the tetradic Green’s

function and the coherent dyadic correlation function,

all cross terms are excluded. Consequently, the integral

equation (103) , derived under the effective field approxima-

tion, implies that the expression for the Wigner transform of

the dyadic correlation function is equivalent to that obtained

in the quasi-uniform field approximation. 
A4. The scattering intensity operator is computed in the lad-

der approximation for the Bethe–Salpeter equation, while the

Wigner–Fourier transform of the scattering intensity opera-

tor is computed by means of the on-shell approximation for

the Fourier transform of the intensity operator. 

A5. The weak surface correlation approximation is used for aver-

aging over surface fluctuations. 

The conventional radiative transfer equation has been obtained

y further assuming that K 

′ ′  K 

′ as well as by neglecting the

vanescent waves (far-field approximation). 

The following conclusions can be drawn from our analysis. 

1. The quasi-uniform field approximation has not been used ex-

plicitly. It is a consequence of the effective field approximation

and the exclusion of the cross terms in the expressions for the

tetradic Green’s function and the coherent dyadic correlation

function. 

2. Assumptions A3 and A5, as well as the assumption that the

layer thickness is greater than the mean free path, are required

when dealing with a discrete random medium with a finite ge-

ometrical thickness and scattering boundaries. 

3. If the layer has non-scattering boundaries, the main assump-

tions of the derivation are the effective field approximation and

the on-shell approximation to the intensity operator. The valid-

ity of the former is discussed in detail in Appendix 2 . The con-

clusion of this analysis is that the effective field approximation

(with or without coherent potential) applies to sparse media

when the common assumptions and approximations (uncorre-

lated particle positions, far-field approximation, and the Twer-

sky approximation) are made. Its application to dense media is

questionable; it is only in the low-frequency limit that it is jus-

tified. Up to this point, these assumptions are essentially equiv-

alent to those in Ref. [1] . What is new is the on-shell approxi-

mation to the intensity operator. From a mathematical point of

view, this approximation, which in principle should follow from

the sparse medium assumptions, is a consequence of using the

Wigner-transform method; without this approximation, the de-

sired representation of the radiative transfer equation cannot be

obtained. 

ppendix A. Boundary conditions for C 

aa 
(Z, p ⊥ ) 

To derive the boundary condition at the lower boundary,

e set Z = 0 in Eq. (151) . Then we find that C 

++ 
(0 , p ⊥ ) and

 

−−
(0 , p ⊥ ) can be written as C 

++ 
(0 , p ⊥ ) = 

∑ 

b= ± C 

++ 
b (0 , p ⊥ ) and

 

−−
(0 , p ⊥ ) = 

∑ 

b= ± C 

−−
b (0 , p ⊥ ) , respectively, with 

 

++ 
b (0 , p ⊥ ) = 

∫ 
S 

1+1 b 

(p ⊥ , p 1 ⊥ , 0) · X 

b 

(p 1 ⊥ ) d 

2 
p 1 ⊥ , (187) 

 

−−
b (0 , p ⊥ ) = 

∫ 
[ δ(p 1 ⊥ − p ⊥ ) δ−b I 

−−
⊥ (p ⊥ ) 

+ S 

1 −1 b 

(p ⊥ , p 1 ⊥ , 0)] · X 

b 

(p 1 ⊥ ) d 

2 
p 1 ⊥ . (188) 

n Eqs. (187) and (188) , the tetradic X 

b 
(p 1 ⊥ ) is the result of inte-

rating over p 2 ⊥ and Z 1 . Our first goal is to establish relationships

etween C 

++ 
b (0 , p ⊥ ) and C 

−−
b (0 , p ⊥ ) in the cases b = + and b = −.

1. In the case b = + , Eqs. (187) and (188) read 

C 

++ 
+ (0 , p ⊥ ) = 

∫ 
S 

1+1+ 
(p ⊥ , p 1 ⊥ , 0) · X 

+ 
(p 1 ⊥ ) d 

2 
p 1 ⊥ , (189) 

C 

−−
+ (0 , p ⊥ ) = 

∫ 
S 

1 −1+ 
(p ⊥ , p 1 ⊥ , 0) · X 

+ 
(p 1 ⊥ ) d 

2 
p 1 ⊥ . (190) 
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On the other hand, from (cf. Eq. (65) ) 

S 
1+1+ = R 01 S 

1 −1+ 
, (191)

we get 

S 
1+1+ 

(k ⊥ , k 1 ⊥ ) � S 
1+1+ � 

(k 

′ 
⊥ , k 

′ 
1 ⊥ ) 

= 

∫ 
[ R 01 (k ⊥ , k 2 ⊥ ) � R 

� 

01 (k 

′ 
⊥ , k 

′ 
2 ⊥ )] 

· [ S 
1 −1+ 

(k 2 ⊥ , k 1 ⊥ ) � S 
1 −1+ � 

(k 

′ 
2 ⊥ , k 

′ 
1 ⊥ )] d 

2 
k 

′ 
2 ⊥ d 

2 
k 2 ⊥ . (192)

Taking the average over surface fluctuations under the weak

surface correlation approximation (the tetradics R 01 � R 

� 

01 and

S 
1 −1+ 

� S 
1 −1+ � 

are assumed to be weakly correlated on the

rough surface), we obtain 〈
S 

1+1+ 
(k ⊥ , k 1 ⊥ ) � S 

1+1+ � 
(k 

′ 
⊥ , k 

′ 
1 ⊥ ) 

〉
S 

= 

∫ 〈
R 01 (k ⊥ , k 2 ⊥ ) � R 

� 

01 (k 

′ 
⊥ , k 

′ 
2 ⊥ ) 

〉
S 

·
〈
S 

1 −1+ 
(k 2 ⊥ , k 1 ⊥ ) � S 

1 −1+ � 
(k 

′ 
2 ⊥ , k 

′ 
1 ⊥ ) 

〉
S 

d 

2 
k 

′ 
2 ⊥ d 

2 
k 2 ⊥ . (193)

In Eq. (193) , we make the changes of variables 

k ⊥ = p ⊥ + 

P ⊥ 
2 

, k 

′ 
⊥ = p ⊥ − P ⊥ 

2 

, (194)

k 1 ⊥ = p 1 ⊥ + 

P 1 ⊥ 
2 

, k 

′ 
1 ⊥ = p 1 ⊥ − P 1 ⊥ 

2 

, (195)

k 2 ⊥ = p 2 ⊥ + 

P 2 ⊥ 
2 

, k 

′ 
2 ⊥ = p 2 ⊥ − P 2 ⊥ 

2 

; (196)

then, in using d 

2 k 

′ 
2 ⊥ d 

2 k 2 ⊥ = d 

2 p 2 ⊥ d 

2 P 2 ⊥ (the Jacobian of the

transformation (k 2 ⊥ , k 

′ 
2 ⊥ ) → (p 2 ⊥ , P 2 ⊥ ) is readily seen to be

unity), we find 

S 

1+1+ 
(p ⊥ , p 1 ⊥ , P ⊥ ) = 

∫ 
R 01 (p ⊥ , p 2 ⊥ , P ⊥ ) 

· S 

1 −1+ 
(p 2 ⊥ , p 1 ⊥ , P ⊥ ) d 

2 
p 2 ⊥ , (197)

where, the tetradic reflection operator R 01 is defined as in

Eq. (75) , i.e., 

R 01 (p ⊥ , p 1 ⊥ , P ⊥ ) = 

(2 π) 2 

A 

〈 
R 01 

(
p ⊥ + 

P ⊥ 
2 

, p 1 ⊥ + 

P ⊥ 
2 

)
� R 

� 

01 

(
p ⊥ − P ⊥ 

2 

, p 1 ⊥ − P ⊥ 
2 

)〉 
S 
, (198)

and the tetradic S 

1 a 1 b 
is defined in a similar manner. Setting

P ⊥ = 0 in Eq. (197) , and using Eqs. (189) and (190) gives 

C 

++ 
+ (0 , p ⊥ ) = 

∫ 
R 01 (p ⊥ , p 1 ⊥ , 0) · C 

−−
+ (0 , p 1 ⊥ ) d 

2 
p 1 ⊥ . (199)

2. In the case b = −, Eqs. (187) and (188) take the form 

C 

++ 
− (0 , p ⊥ ) = 

∫ 
S 

1+1 −
(p ⊥ , p 1 ⊥ , 0) · X 

−
(p 1 ⊥ ) d 

2 
p 1 ⊥ , (200)

C 

−−
− (0 , p ⊥ ) = 

∫ 
[ δ(p 1 ⊥ − p ⊥ ) I 

−−
⊥ (p ⊥ ) 

+ S 

1 −1 −
(p ⊥ , p 1 ⊥ , 0)] · X 

−
(p 1 ⊥ ) d 

2 
p 1 ⊥ . (201)

Now, from (cf. Eq. (66) ) 

S 
1+1 − = R 01 ( I 

1 −1 −
⊥ + S 

1 −1 −
) , (202)

the approximation 

( I 
1 −1 −
⊥ + S 

1 −1 −
) � ( I 

1 −1 −
⊥ + S 

1 −1 −� 
) 
≈ I 
1 −1 −
⊥ � I 

1 −1 −
⊥ + S 

1 −1 −
� S 

1 −1 −� 
, (203)

which is similar to the approximation we used while comput-

ing the Wigner transform of the dyadic Green’s function, and

the weak surface correlation approximation , we get 〈
S 

1+1 −
(k ⊥ , k 1 ⊥ ) � S 

1+1 −� 
(k 

′ 
⊥ , k 

′ 
1 ⊥ ) 

〉
S 

= 

∫ 〈
R 01 (k ⊥ , k 2 ⊥ ) � R 

� 

01 (k 

′ 
⊥ , k 

′ 
2 ⊥ ) 

〉
S 

·
[
I 
1 −1 −
⊥ (k 2 ⊥ , k 1 ⊥ ) � I 

1 −1 −
⊥ (k 

′ 
2 ⊥ , k 

′ 
1 ⊥ ) 

+ 

〈
S 

1 −1 −
(k 2 ⊥ , k 1 ⊥ ) � S 

1 −1 −� 
(k 

′ 
2 ⊥ , k 

′ 
1 ⊥ ) 

〉
S 

]
d 

2 
k 

′ 
2 ⊥ d 

2 
k 2 ⊥ . 

(204)

Using (cf. Eq. (71) ) 

I 
1 −1 −
⊥ (k 2 ⊥ , k 1 ⊥ ) = δ(k 2 ⊥ − k 1 ⊥ ) I 

−
⊥ (k 1 ⊥ ) , 

and making the changes of variables (194) –(196) in Eq. (204) ,

we obtain 

S 

1+1 −
(p ⊥ , p 1 ⊥ , P ⊥ ) 

= 

∫ 
R 01 (p ⊥ , p 2 ⊥ , P ⊥ ) 

·
[ 
δ(p 2 ⊥ − p 1 ⊥ ) I 

−
⊥ 

(
p 1 ⊥ + 

P ⊥ 
2 

)
� I 

−
⊥ 

(
p 1 ⊥ − P ⊥ 

2 

)
+ S 

1 −1 −
(p 2 ⊥ , p 1 ⊥ , P ⊥ ) 

] 
d 

2 
p 2 ⊥ . (205)

Setting P ⊥ = 0 in Eq. (205) and taking into account

Eqs. (200) and (201) gives, as before, 

C 

++ 
− (0 , p ⊥ ) = 

∫ 
R 01 (p ⊥ , p 1 ⊥ , 0) · C 

−−
− (0 , p 1 ⊥ ) d 

2 
p 1 ⊥ . (206)

From Eqs. (199) and (206) , we infer that the boundary condition

t Z = 0 is 

 

++ 
(0 , p ⊥ ) = 

∫ 
R 01 (p ⊥ , p 1 ⊥ , 0) · C 

−−
(0 , p 1 ⊥ ) d 

2 
p 1 ⊥ . 

To derive the boundary condition at Z = H we use Eqs. (67) ,

68) , and (72) , and proceed analogously. We obtain 

 

−−
(H, p ⊥ ) = 

∫ 
R 21 (p ⊥ , p 1 ⊥ , 0) · C 

++ 
(H, p 1 ⊥ ) d 

2 
p 1 ⊥ , (207)

here the tetradic reflection operator R 21 (p ⊥ , p 1 ⊥ , 0) at the upper

oundary is given by Eq. (135) . 

ppendix B. Effective field approximation 

In this appendix we analyze under what conditions the aver-

ge dyadic Green’s function for a discrete random medium can be

pproximated by the dyadic Green’s function for a homogeneous

edium with the effective propagation constant. For simplicity, the

edium is assumed to be unbounded. 

Taking the Fourier transform of the Dyson equation for the av-

rage dyadic Green’s function 

〈
G 

〉
= G 0 + G 0 M 

〈
G 

〉
, under the as-

umption that for a statistically homogeneous medium, the mass

perator and the average dyadic Green’s function are translation

nvariant, i.e., M (r , r ′ ) = M (r − r ′ ) and 

〈
G (r , r ′ ) 

〉
= 

〈
G (r − r ′ ) 

〉
, re-

pectively, we are led to the dispersion equation [11] 

et [(p 2 − k 2 1 )( I −̂ p �̂ p ) − k 2 1 ̂
 p �̂ p − M p (p )] = 0 (208)

or the propagation direction 

̂ p , where G 0 (r , r ′ ) is the free-space

yadic Green’s function and M p (p ) is the Fourier transform of the

ass operator. In a statistically isotropic medium, e.g., a medium

onsisting of spherical particles or randomly oriented particles
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ith a plane of symmetry, we assume that the mass operator is

f the form 

 p (p ) = M pL (p) ̂  p �̂ p + M pT (p)( I −̂ p �̂ p ) , (209)

n which case Eq. (208) yields the dispersion equations for the lon-

itudinal modes 

 

2 
1 + M pL (p) = 0 , (210) 

nd the transverse modes 

p 2 = k 2 1 + M pT (p) . (211) 

he assumption (209) reflects the statistical isotropy of the

edium, i.e., the effective wavenumber K solving Eqs. (210) or

211) does not depend on the propagation direction ̂

 p . 

We are now well prepared to state the so-called homogeniza-

ion theorem [18] . For a statistically isotropic medium, assume the

ollowing: 

A1. The mass operator is as in Eq. (209) . 

A2. The equations k 2 
1 

+ M pL (p) = 0 and k 2 
1 

+ M pT (p) = 0 have no

solutions. 

A3. From the set of solutions of the dispersion equation for the

transverse modes p 2 = k 2 
1 

+ M pT (p) , consider only the solution

K with the smallest positive imaginary part. 

Then, the average dyadic Green’s function 
〈
G 

〉
can be approximated

y the dyadic Green’s function of an infinite homogeneous medium

ith wavenumber K , 

 K (r , r ′ ) = G K (R ) = 

(
I + 

1 

K 

2 
∇ � ∇ 

)
e j KR 

4 πR 

, R = r − r ′ , (212)

that is 

G 

〉
≈ G K . (213) 

et us prove this result. From 

〈
G 

〉−1 = G 

−1 

0 − M and Assumption A1,

he Fourier transform of the average dyadic Green’s function is

iven by 

 p (p ) = [ G 

−1 

0 p (p ) − M p (p )] −1 

= 

1 

(p 2 − k 2 
1 
) − M pT (p) 

( I −̂ p �̂ p ) − 1 

k 2 
1 

+ M pL (p) ̂
 p �̂ p , 

(214) 

here 

 0 p (p ) = 

1 

p 2 − k 2 
1 

( I −̂ p �̂ p ) − 1 

k 2 
1 ̂

 p �̂ p 

s the Fourier transform of G 0 (r , r ′ ) . Setting 

 

2 
pT (p) = k 2 1 + M pT (p) , (215) 

 

2 
pL (p) = k 2 1 + M pL (p) , (216) 

n Eq. (214) , we obtain 

 p (p ) = 

[ 
I − p 2 

k 2 pT (p) ̂
 p �̂ p 

] 
1 

p 2 − k 2 pT (p) 

+ 

1 

k 2 pT (p) ̂
 p �̂ p − 1 

k 2 pL (p) ̂
 p �̂ p . (217) 

sing the relations 

∇ � ∇ e j p ·r = −p 2 e j p ·r ̂ p �̂ p , 
 

e j p ·R d 

2 ̂ p = 4 π
sin (pR ) 

pR 

, 
nd 

 ∞ 

−∞ 

g(x ) e j x d x = 2 j 

∫ ∞ 

0 

g(x ) sin x d x, for g(−x ) = −g(x ) , 

nd supposing that k 2 pT (−p) = k 2 pT (p) and k 2 pL (−p) = k 2 pL (p) , we

nd that in the coordinate space, the average dyadic Green’s func-

ion is 

G (R ) 
〉
= 

1 

4 π2 j 

∫ ∞ 

−∞ 

[ 
I + 

1 

k 2 pT (p) 
∇ � ∇ 

] 
p 

p 2 − k 2 pT (p) 

e j pR 

R 

d p 

− 1 

4 π2 j 
∇ � ∇ 

∫ ∞ 

−∞ 

[ 
1 

k 2 pT (p) 
− 1 

k 2 pL (p) 

] 
e j pR 

pR 

d p. (218) 

he above integrals are computed by using the residue theorem.

y Assumption A2, there are no poles corresponding to k pT (p) = 0

nd k pL (p) = 0 . Hence, in the first integral, written as 

 ∞ 

−∞ 

I 
p 

p 2 − k 2 pT (p) 

e j pR 

R 

d p + ∇ �∇ 

∫ ∞ 

−∞ 

1 

k 2 pT (p) 

p 

p 2 − k 2 pT (p) 

e j pR 

R 

d p, 

(219) 

he remaining poles are the solutions of the equation p 2 − k 2 pT (p) =
 , that is, the solutions of the dispersion equation for the trans-

erse modes p 2 = k 2 1 + M pT (p) . If in view of Assumption A3, we re-

ain only the solution K with the smallest positive imaginary part,

e obtain 

 ∞ 

−∞ 

p 

p 2 − k 2 pT (p) 

e j pR 

R 

d p = π j 
e j KR 

R 

(220) 

nd 

 ∞ 

−∞ 

1 

k 2 pT (p) 

p 

p 2 − k 2 pT (p) 

e j pR 

R 

d p = π j 
1 

K 

2 

e j KR 

R 

; (221) 

hence 

1 

4 π2 j 

∫ ∞ 

−∞ 

[ 
I + 

1 

k 2 pT (p) 
∇ � ∇ 

] 
p 

p 2 − k 2 pT (p) 

e j pR 

R 

d p 

= 

(
I + 

1 

K 

2 
∇ � ∇ 

)
e j KR 

4 πR 

. (222) 

ote that the solution K with the smallest positive imaginary

art has the largest exponential factor exp (−K 

′′ R ) ; the solutions

ith larger positive imaginary parts are strongly attenuated in the

edium. In the second integral, written as 

 ∞ 

−∞ 

[ 
1 

k 2 pT (p) 
− 1 

k 2 pL (p) 

] 
e j pR 

pR 

d p, (223) 

e have a single pole at p = 0 . Choosing a semicircular integration

ontour in the counter-clockwise direction around the pole p = 0 ,

e obtain 

 ∞ 

−∞ 

[ 
1 

k 2 pT (p) 
− 1 

k 2 pL (p) 

] 
e j pR 

pR 

d p = −π j 

[ 
1 

k 2 pT (0) 
− 1 

k 2 pL (0) 

] 
1 

R 

. 

(224) 

rom 

 � ∇ 

(
1 

R 

)
= 

2 

R 

3 ̂
 R � ̂ R − 1 

R 

3 
( I − ̂ R � ̂ R ) = (−I + 3 ̂

 R � ̂ R ) 
1 

R 

3 
, 

e then get 

− 1 

4 π2 j 
∇ � ∇ 

∫ ∞ 

−∞ 

[ 
1 

k 2 pT (p) 
− 1 

k 2 pL (p) 

] 
e j pR 

pR 

d p 

= 

[ 
1 

k 2 
pT 

(0) 
− 1 

k 2 
pL 

(0) 

] 
(−I + 3 ̂

 R � ̂ R ) 
1 

4 πR 

3 
. (225) 
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In the effective and quasi-crystalline approximations, it has been

shown that in the low frequency limit, i.e., p → 0, we have

M pL (p) = M pT (p) = M p , so that the mass operator is of the form

M p (p ) = M p I [11] . Consequently, k 2 pT (0) = k 2 pL (0) , and the second

integral in the expression for 
〈
G (R ) 

〉
vanishes. From Eq. (222) we

then find that the average dyadic Green’s function is given by

Eq. (212) . Thus, the approximation 

〈
G 

〉
≈ G K is valid for a statisti-

cally isotropic medium when the mass operator is as in Eq. (209) ,

the longitudinal modes are neglected, and the transverse mode

with the smallest positive imaginary part is considered. 

The main assumption in proving Eq. (213) is the representation

(209) for the mass operator. However, in general, the isotropy con-

dition is of the form M p (p ) = M p (p) , or more restrictively but still

more generally as in Eq. (209) of the form M p (p ) = M pL (p) ̂  p �̂ p +
M pT (p) , where M pT is the transverse component of M p . Unfortu-

nately, in these two cases we have not been able to prove the ho-

mogenization theorem. 

In the following we analyze the applicability of the homoge-

nization theorem to the cases discussed in Ref. [11] . 

Effective field approximation or Foldy’s approximation 

The Foldy approximation applies to sparse media and relies on

the Foldy equation for the total field E = E 0 + 

∑ 

i G 0 T i E exc i , where

E exc i is the field exciting particle i . Taking the configuration aver-

age of this integral equation under the assumption that the posi-

tions of the particles are statistically independent, employing the

first-order closure relation or the Foldy approximation 

〈
E exc i 

〉
i 
=〈

E 

〉
, where

〈
E exc i 

〉
i 

is the conditional probability of the exciting field

with the position of particle i held fixed, and using the fact that T i 
is a translational dyadic, i.e., T i (r , r ′ ) = T (r − R i , r 

′ − R i ) , it is found

that in the Fourier space, the mass operator is given by 

M p (p ) = n 0 T p (p , p ) , (226)

where T p (p , p 

′ ) is the Fourier transform of T (r , r ′ ) (the transition

operator for a particle centered at the origin of the coordinate sys-

tem). The dyadic T p (p , p 

′ ) satisfies the Lippmann–Schwinger equa-

tion in the Fourier domain 

T p (p , p 

′ ) = U 0 p (p , p 

′ ) + 

1 

(2 π) 3 

∫ 
U 0 p (p , p 

′′ ) 

· G 0 p (p 

′′ ) · T p (p 

′′ , p 

′ ) d 

3 
p 

′′ , (227)

where U 0 p (p , p 

′ ) is the Fourier transform of the scattering poten-

tial of a particle centered at the origin of the coordinate system

U 0 (r , r ′ ) = U 0 (r ) δ(r − r ′ ) I with U 0 (r ) = k 2 
1 
(m 

2 − 1)�(r ) . For spher-

ical particles, the following representation for T p (p , p ) has been

derived in [19] : 

T p (p , p ) = T pL (p) ̂  p �̂ p + T pT (p)( I −̂ p �̂ p ) , (228)

where 

T pL (p) = V 0 k 
2 
1 δm 

{ ∑ 

n ≥0 

3 n (n + 1)(2 n + 1) � m 

ϕ n (k p a ) − m 

2 ϕ 

(1) 
n (k 1 a ) 

[ 
j n (pa ) 

pa 

] 2 
+ 1 

} 

(229)

and 

T pT (p) = T p2 (p) + T p3 (p) , (230)

with 

T p2 (p) = V 0 k 
2 
1 δm 

{ [ 
1 + 

p 4 � m 

(p 2 − k 2 p ) 
2 

] 
S(pa ) 

− 1 

2 

m 

2 p 
2 − k 2 1 

p 2 − k 2 p 
[ S(pa ) − 1] 
+ 

3 

2 

∑ 

n ≥1 

(2 n + 1) 
[ � m R 

2 
n (pa, k p a ) 

ϕ n (k p a ) − m 

2 ϕ 

(1) 
n (k 1 a ) 

− p 4 � m 

(p 2 − k 2 p ) 
2 
ϕ n (k p a ) 

] 
J n (pa, pa ) 

} 

(231)

nd 

 p3 (p) = V 0 k 
2 
1 � m 

{ 

p 2 k 2 1 � m 

(p 2 − k 2 p ) 
2 
S(pa ) − 1 

2 

p 2 − k 2 1 

p 2 − k 2 p 
[ S(pa ) − 1] 

+ 

3 

2 

∑ 

n ≥1 

(2 n + 1) 
[ 
(k 1 a ) 

2 (pa ) 2 � m S 2 n (pa, k p a ) 

ϕ n (k p ) − ϕ 

(1) 
n (k 1 ) 

− p 2 k 2 1 � m 

(p 2 − k 2 p ) 
2 
ϕ n (k p a ) 

] 
J n (pa, pa ) 

} 

. (232)

n Eqs. (231) and (232) , V 0 = (4 / 3) πa 3 is the volume of the spher-

cal particle of radius a , � m and δm are given, respectively, by

 m = m 

2 − 1 and δm = 1 − 1 / m 

2 , where m = k p /k 1 is the relative

efractive index of the particle, while the auxiliary functions J n , S n ,

 n , and S are given by 

 n (p 1 a, p 2 a ) = 

j n (p 1 a ) 

p 1 a 

j n (p 2 a ) 

p 2 a 
, (233)

 n (p 1 a, p 2 a ) = 

ϕ n (p 1 a ) − ϕ n (p 2 a ) 

(p 1 a ) 2 − (p 2 a ) 2 
, (234)

 n (p 1 a, p 2 a ) = 

(p 1 a ) 
2 ϕ n (p 2 a ) − (p 2 a ) 

2 ϕ n (p 1 a ) 

(p 1 a ) 2 − (p 2 a ) 2 
, (235)

(x ) = 

3 

2 x 2 
[1 − j 0 (2 x )] , (236)

ith 

 n (pa ) = 

[ pa j n (pa )] ′ 
j n (pa ) 

and ϕ 

(1) 
n (pa ) = 

[ pah n (pa )] ′ 
h n (pa ) 

. (237)

n Eqs. (233) –(237) , j n ( x ) and h n ( x ) are the spherical Bessel and

ankel functions, respectively. From Eqs. (226) and (228) , it follows

hat M p (p ) is as in Eq. (209) ; hence, Assumption A1 of the homog-

nization theorem is satisfied. Considering the dispersion equation

or the longitudinal modes k 2 
1 

+ n 0 T pL (K) = 0 , we see that for small

 0 , we have n 0 T pL (K)  k 2 
1 
; hence the dispersion equation for the

ongitudinal modes has no solutions, and Assumption A2 is also

atisfied. If the effective wavenumber is taken as the solution of

he equation K 

2 = k 2 
1 

+ n 0 T pT (K) with the smallest positive imag-

nary part, we conclude that the homogenization theorem is ap-

licable. For this reason, the Foldy approximation for the exciting

elds is equivalent to the effective field approximation. Note that

f n 0 is small, the term n 0 T pT (K) is also small, and we can approx-

mate K ≈ k 1 . Therefore, the argument K of T pT can be replaced by

 1 , and we obtain the dispersion relation K 

2 = k 2 
1 

+ n 0 T pT (k 1 ) . 

In Ref. [2] it has been shown that the expression for the mass

perator derived under the Foldy approximation for the exciting

elds is the same as that obtained under the Twersky approxi-

ation applied to the Foldy equation for the total field. Both ap-

roaches also assume that the positions of the particles are sta-

istically independent. Taking into account that the neglect of the

ongitudinal waves is allowed in the far-field approximation (when

n the far zone, the waves are transverse), we conclude that the

ffective field approximation is valid under the same assumptions

s in Ref. [1] . 

ffective-field approximation with coherent potential 

In this approach, the counterpart of the transition operator

 for particle i satisfying the Lippmann–Schwinger equation T =
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f  
 i + U i G 0 T i is the “effective” transition operator T e i for particle i

atisfying the integral equation T e i = U i + U i 

〈
G 

〉
T e i . Assuming that

 e i is a translational dyadic, that is, T e i (r , r ′ ) = T e (r − R i , r 
′ − R i ) ,

here T e satisfies the Lippmann–Schwinger equation for a particle

entered at the origin of the coordinate system T e = U 0 + U 0 

〈
G 

〉
T e ,

t is found that in the Fourier space, the mass operator is given by

 p (p ) = n 0 T e p (p , p ) , (238)

here T e p (p , p 

′ ) is the Fourier transform of T e (r , r ′ ) . The dyadic

 e p (p , p 

′ ) is computed from the system of equations 

 e p (p , p 

′ ) = U 0 p (p , p 

′ ) + 

1 

(2 π) 3 

∫ 
U 0 p (p , p 

′′ ) 

· G p (p 

′′ ) · T e p (p 

′′ , p 

′ ) d 

3 
p 

′′ , (239) 

 

−1 

p (p ) = G 

−1 

0 p (p ) − n 0 T e p (p , p ) . (240) 

fter solving Eqs. (239) –(240) for T e p (p , p 

′ ) , the effective

avenumber is determined, in principle, as the solution of the

quation (cf. Eq. (208) ) 

et [(K 

2 − k 2 1 )( I −̂ p �̂ p ) − k 2 1 ̂
 p �̂ p − n 0 T e p (K ̂

 p , K ̂

 p )] = 0 , (241)

or a specified propagation direction ̂

 p . Because solving Eqs. (239) –

240) , and so computing the mass operator by means of Eq. (238) ,

s a difficult task, the following practical approach is used in-

tead. Assume 
〈
G 

〉
= G K implying G p = G K p , where G K p is the Fourier

ransform of the dyadic Green’s function G K corresponding to an

nfinite homogeneous medium with wavenumber K . Next, solve the

ntegral equation 

 e p (p , p 

′ | K) = U 0 p (p , p 

′ ) + 

1 

(2 π) 3 

∫ 
U 0 p (p , p 

′′ ) 

· G K p (p 

′′ ) · T e p (p 

′′ , p 

′ | K) d 

3 
p 

′′ , (242) 

or any K . Thus, T e p (p , p 

′ | K) is a parametric solution of parame-

er K . Determine the effective wavenumber as the solution of the

quation 

et [(K 

2 − k 2 1 )( I −̂ p �̂ p ) − k 2 1 ̂
 p �̂ p − n 0 T e p (K ̂

 p , K ̂

 p | K)] = 0 , 

(243) 

nd finally, for the solution K , compute the mass operator as

 p (p ) = n 0 T e p (p , p | K) . This approach is valid, i.e., the assumption

G 

〉
= G K is not contradicted, if the result of the calculation satis-

es the assumptions of the homogenization theorem. First of all,

 e p (p , p | K) should be as in Eq. (228) . To show this, we observe

hat if we rewrite the scattering potential U 0 (r ) = (k 2 p − k 2 
1 
)�(r )

s U 0 (r ) = ( ̃  k 2 p − K 

2 )�(r ) , with 

˜ k 2 p = k 2 p − k 2 
1 

+ K 

2 , then the tran-

ition operator T e (r , r ′ | K) corresponds to a particle of permittiv-

ty ˜ ε p = ε p − ε 1 + ε eff placed in a medium of permittivity ε eff ,

here ̃  k 2 p = ω 

2 ˜ ε p μ0 and K 

2 = ω 

2 ε eff μ0 . Because in Eqs. (227) and

242) , G 0 p (p ) and G K p (p ) correspond to homogeneous background

edia with wavenumbers k 1 and K , respectively, we deduce that

 e p (p , p | K) is as in Eq. (228) . More precisley, the expressions

or T e pL (p| K) and T e pT (p| K) are given by Eqs. (229) –(232) , but in

hich, k 1 is replaced by K , k p by ˜ k p , and m by ˜ m = ̃

 k p /K. Not-

ng that Assumption A2 of the homogenization theorem is again

 consequence of the small value of n 0 , we conclude that if the

ffective wavenumber is taken as the solution of the equation

 

2 = k 2 1 + n 0 T e pT (K | K ) with the smallest positive imaginary part,

he assumptions of the homogenization theorem are satisfied, and

o that the approximation 

〈
G 

〉
≈ G K is not contradicted. If we ne-

lect the evanescent waves, the radiative transfer equation for the

pecific coherency column vector is as in Eq. (184) ; however, the
mplitude matrix corresponds to a spherical particle of permittiv-

ty ˜ ε p = ε p − ε 1 + ε ′ eff placed in a non-absorbing medium of per-

ittivity ε ′ eff ( K 

′ 2 = ω 

2 ε ′ eff μ0 ) . 

uasi-crystalline approximation with coherent potential 

The quasi-crystalline approximation or the Lax approximation

pplies to dense media and relies on the Foldy equations for the

otal electric field E = E 0 + 

∑ 

i G 0 T i E exc i , and the exciting fields

 exc i = E 0 + 

∑ 

j 	 = i G 0 T j E exc j . In taking the configuration average of

hese equations, the second-order closure relation or the Lax ap-

roximation 

〈
E exc j 

〉
i j 

= 

〈
E exc j 

〉
j 

is used. In this approach, the key

uantity is the dyadic operator C e i solving the integral equation 

 e i = T e i + n 0 

∫ 
h (R j − R i ) T e i 

〈
G 

〉
C e j d 

3 
R j , 

here h (r ) = g(r ) − 1 , and g ( r ) is the correlation function (pair-

istribution function) of the discrete scatterers. Assuming that C e i 

s a translational dyadic, i.e., C e i (r , r ′ ) = C e (r − R i , r 
′ − R i ) , it is

ound that in the Fourier space, the mass operator is given by 

 p (p ) = n 0 C e p (p , p ) , 

here C e p (p , p 

′ ) is the Fourier transform of C e (r , r ′ ) , and h p ( p ) is

he Fourier transform of h ( r ). The dyadic C e p (p , p 

′ ) satisfies the

ystem of equations 

 e p (p , p 

′ ) = T e p (p , p 

′ ) + 

n 0 

(2 π) 3 

∫ 
h p (p 

′′ − p 

′ ) T e p (p , p 

′′ ) 

· G p (p 

′′ ) · C e p (p 

′′ , p 

′ ) d 

3 
p 

′′ , (244) 

 e p (p , p 

′ ) = U 0 p (p , p 

′ ) + 

1 

(2 π) 3 

∫ 
U 0 p (p , p 

′′ ) 

· G p (p 

′′ ) · T e p (p 

′′ , p 

′ ) d 

3 
p 

′′ , (245) 

 

−1 

p (p ) = G 

−1 

0 p (p ) − n 0 C e p (p , p ) . (246) 

If the preceding approach is used for solving Eqs. (244) –(246) ,

e have to show that C e p (p , p | K) is as in Eq. (228) . This task

s not trivial at all. An alterantive is to compute numerically the

yadic C e p (p , p 

′ | K) by using the technique described in Ref. [20] ,

nd then to check if C e p (p , p | K) possesses this property. In this

pproach, C e p (p , p 

′ | K) and T e p (p , p 

′ | K) are expanded in terms of

he vector spherical harmonics v αmn (θ, ϕ) , α = 1 , 2 , 3 , that is, for

 = (p, θp , ϕ p ) we have 

 e p (p , p 

′ | K) = 

∑ 

mnn ′ 

∑ 

αβ=1 , 2 , 3 

C 
αβ
mnn ′ (p, p ′ | K) 

× v αmn (θp , ϕ p ) � v 
β
−mn ′ (θp ′ , ϕ p ′ ) 

nd 

 e p (p , p 

′ | K) = 

∑ 

mnn ′ 

∑ 

αβ=1 , 2 , 3 

T 
αβ

mnn ′ (p, p ′ | K) 

× v αmn (θp , ϕ p ) � v 
β
−mn ′ (θp ′ , ϕ p ′ ) , 

espectively, and then the integral equation (244) is transformed

nto an algebraic system of equations for the expansion func-

ions C 
αβ
mnn ′ (p, p ′ | K) . The solution of this system of equations

or all frequencies is extremely laborious. However, in the low-

requency limit, an analytic solution can be obtained; it is given
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by C e p (p , p 

′ | K) = C e (K) I for any p and p 

′ , where 

 e (K) = 

zV 0 

1 + 

z(1 − f ) 
3 K 2 

{ 

1 + 

2 j 

9 

zKa 3 

1 + 

z(1 − f ) 
3 K 2 

[ 
1 + 4 πn 0 

∫ ∞ 

0 

h (r ) r 2 d r 

] } 

, 

(247)

f = n 0 V 0 is the particle volume concentration, and z = k 2 
1 
(m 

2 − 1) .

Thus, in the low-frequency limit C e p (p , p | K) is as in Eq. (228) , and

therefore, the effective field approximation is valid in this limit. In

fact, in the limit p → 0, C e p (p , p | K) playing the role of the transi-

tion operator does not depend on p at all (see the above formula).

The reason is that, relative to the wavelength, the sphere becomes

a point-like scatterer, and a point has no length scale and no geo-

metric structure to speak of. 

For dense media and all frequencies, it is not only Assumption

A1 but also Assumption A2 which appears to be problematic. The

neglect of the longitudinal waves is equivalent to the far-field ap-

proximation, which, in turn, is typical of sparse media. Therefore,

we believe that the use of the homogenization theorem in the case

of dense media leads only to an approximate model for describ-

ing radiative transfer (essentially, the model borrows some features

which are characteristic of sparse media ). Such a model [14] uses the

correlated ladder approximation for the Bethe–Salpeter equation in

which the tetradic scattering intensity operator is given by 

I (r , r 1 , r 
′ , r ′ 1 ) = n 0 

∫ 
D 1 

C e i (r , r 1 ) � C 

� 

e i (r ′ , r ′ 1 ) d 

3 
R i 

+ n 

2 
0 

∫ 
D 1 

h (R j − R i ) C e i (r , r 1 ) � C 

� 

e j (r ′ , r ′ 1 ) d 

3 
R j d 

3 
R i .

(248)

The Wigner–Fourier transform of the intensity operator at P ⊥ = 0

is (compare to Eq. (118) ) 

I WF (Z, p , Z 1 , p 1 , 0) = n 0 q p (p 1 − p ) δ(Z − Z 1 ) C e p (p 

sgn (p z ) , p 

sgn (p 1 z ) 
1 

) 

� C 

� 

e p (p 

sgn (p z ) , p 

sgn (p 1 z ) 
1 

) , (249)

where q p (p ) = n 0 h p (p ) + 1 . By employing essentially the same ar-

guments as in the derivation of the integral equation (151) , we

find that the integral form of the radiative transfer equation for

the transverse components C 

aa 
(Z, p ⊥ ) of the Wigner transform

C W (Z, p ) , is 

C 

aa 
(Z, p ⊥ ) 

= 

n 0 

16 π2 
e −2 aK ′′ z (p ⊥ ) Z 

∑ 

b,c= ±

∫ H 

0 

{ 

∫ 
1 

| K z (p 1 ⊥ ) | 2 e 
2 bK ′′ z (p 1 ⊥ ) Z 1 

× q p (p 2 ⊥ − p 1 ⊥ , cK 

′ 
z (p 2 ⊥ ) − bK 

′ 
z (p 1 ⊥ )) 

× [ S 

1 a 1 b 

(p ⊥ , p 1 ⊥ , 0) + δab δa, sgn (Z−Z 1 ) δ(p ⊥ − p 1 ⊥ ) I 
ab 

⊥ (p ⊥ )] 

· C 

bc 

e pT (p 1 ⊥ , p 2 ⊥ ) · [ C 

cc 

c (Z 1 , p 2 ⊥ ) + C 

cc 
(Z 1 , p 2 ⊥ )] d 

2 
p 1 ⊥ d 

2 
p 2 ⊥ 

} 

d Z 1 ,

(250)

where (compare to Eq. (152) ) 

C 

bc 

e pT (p 1 ⊥ , p 2 ⊥ ) = C e pT (p 

b 
1 , p 

c 
2 ) � C 

� 

e pT (p 

b 
1 , p 

c 
2 ) , (251)

and we have set q p (p 2 − p 1 ) = q p (p 2 ⊥ − p 1 ⊥ , p 2 z − p 1 z ) . Taking the

derivative of Eq. (250) , we get (compare to Eq. (159) ) 

∂ 

∂Z 
C 

aa 
(Z, p ⊥ ) = −2 aK 

′′ 
z (p ⊥ ) C 

aa 
(Z, p ⊥ ) + 

a 

16 π2 

n 0 

| K z (p ⊥ ) | 2 
×

∑ 

b= ±

∫ 
q p (p 1 ⊥ − p ⊥ , bK 

′ 
z (p 1 ⊥ ) − aK 

′ 
z (p ⊥ )) 

× C 

ab 

e pT (p ⊥ , p 1 ⊥ ) · [ C 

bb 

c (Z, p 1 ⊥ ) + C 

bb 
(Z, p 1 ⊥ )] d 

2 
p 1 ⊥ . 

(252)
or sparse media, we have q p (p 2 − p 1 ) = 1 and C e pT (p 

b 
1 
, p 

c 
2 
) =

 pT (p 

b 
1 
, p 

c 
2 
) ; consequently, Eqs. (250) and (252) reduce to

qs. (151) and (159) , respectively. On the other hand, in the

ow-frequency limit and because the function h (r ) = g(r ) − 1 is

onzero over a distance range of several particle diameters ( h ( r )

s sharply picked on the mean-free path scale l mp ), the Wigner

ransform of the intensity operator has a particular form, which,

n turn, implies that the integral equation for C 

aa 
(Z, p ⊥ ) is as in

q. (250) with q p (0) in place of q p (p 2 − p 1 ) , and C 

bc 

e pT (p 1 ⊥ , p 2 ⊥ ) =
 C e (K 

′ ) | 2 I ⊥ (p 1 ⊥ ) � I ⊥ (p 2 ⊥ ) . Moreover, if the evanescent waves are

eglected, the radiative transfer equation for the specific coherency

olumn vector is as in Eq. (184) with the coherency phase matrix 

 Z J ( ̂  p , ̂  p 1 )] (η,μ)(η′ ,μ′ ) = 

q p (0) | C e (K 

′ ) | 2 
16 π2 

f ηη′ μμ′ ( ̂  p , ̂  p 1 ) , (253)

f ηη′ μμ′ ( ̂  p , ̂  p 1 ) = [ ̂ η( ̂  p ) ·̂ η′ ( ̂  p 1 )][ ̂ μ( ̂  p ) · ̂ μ′ ( ̂  p 1 )] , (254)

or η, η′ , μ, μ′ = θ, ϕ. 
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