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In this paper we revisit the fundamentals of the null-field method with discrete sources. We prove the unique
solvability of the null-field equations for the total field inside the particle and the internal field outside the
particle, at all wavenumbers. For this purpose, we use the equivalence between the null-field and surface integral
equations methods. Furthermore, we discuss the completeness property of different systems of discrete sources for
a surface field approximation, and derive an infinite set of integral equations for the surface fields in a variety of

discrete sources. Finally, we formulate the null-field scheme as an approach aiming to construct an approximate
solution to the scattering problem. The way in which we introduce the T matrix of a particle is different from the
standard approach relying on the assumption that the system of regular vector spherical wave functions for the

interior problem is a basis.

1. Introduction

In 1965 Waterman proposed the null-field method (otherwise known
as the extended boundary condition method) aimed at the approximation
of the time-harmonic electromagnetic field scattered by a nonspherical
particle [1]. The method is attractive from the computational standpoint,
since it requires simply the evaluation of certain surface integrals
involving classical special functions while neither singular nor even
weakly singular boundary operators have to be computed. The null-field
method was later developed for treating problems in acoustics [2-6],
elastodynamics [7,8], and hydrodynamics [9,10]. Many calculations
have been based on the null-field method and its subsequent variants; for
a review we refer to Refs. [11-15]. The null-field method is often used as
a way of computing the T matrix for a single particle, which in turn is
used to solve multiple-scattering problems; a fundamental paper is
Ref. [16]. Thus, one can construct the T matrix for a group of particles
from the knowledge of the T matrix for each constituent particle alone.

Essentially, in this approach, the null-field equation together with the
vector spherical wave expansion of the dyadic Green's function are used to
derive an infinite set of integral equations for the surface fields, which in
turn are approximated by the tangential components of the localized vector
spherical wave functions. The infinite set of integral equations guarantees

that the null-field condition is satisfied inside a spherical surface enclosed in
the particle, so that by analytic continuation, the null-field condition will be
satisfied inside the whole domain occupied by the particle.

Despite its wide range of applicability, the numerical performance of
the null-field method (for one particle) is strongly dependent on the
particle shape: it tends to degrade as the shape deviates from that of a
sphere. A special feature is that for strongly deformed particles, the null-
field condition is satisfied inside the inscribed sphere, and to a lesser
degree or not at all in domains far from this sphere. Intuitively, one may
expect that the numerical stability of the method can be improved if the
null-field condition is imposed explicitly (rather than by analytic
continuation) in a domain which is larger than the inscribed sphere.
Along this line, formal modifications of the single spherical coordinate-
based null-field method have been proposed. These methods include (i)
the iterative version of the null-field method [17,18], (ii) the application
of the spheroidal coordinate formalism [2,19], and (iii) the use of
discrete sources [20].

The null-field method with discrete sources uses the basic idea of the
discrete sources method in which (i) the approximate solution to the
scattering problem is constructed as a finite linear combination of
discrete sources placed on a certain support, and (ii) the boundary con-
ditions are used to determine the amplitudes of the elementary sources.
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However, in the null-field method with discrete sources, the amplitudes
of the elementary fields are computed from the null-field equation rather
than from the boundary condition. In summary, (i) the null-field equation
is used to derive an infinite set of integral equations for the surface fields
in a variety of discrete sources, and (ii) the surface fields are approxi-
mated by fields of discrete sources. Depending on the choice of discrete
sources, the infinite set of integral equations for the surface fields gua-
rantees that the null-field condition is satisfied inside a spherical surface,
several overlapping spherical surfaces, a nonspherical surface (homo-
thetic with the particle surface), or on a segment of the z-axis enclosed in
the particle. The method can be regarded as an enhancement of the
conventional null-field method, because the use of discrete sources leads
to better conditioned systems of equations and confers a larger flexibility
to the method.

This paper is devoted to a review of the null-field method with
discrete sources, and implicitly, of the conventional null-field method.
The presentation includes (i) a proof of the unique solvability of the null-
field equations for the total field inside the particle and the internal field
outside the particle at all wavenumbers, (ii) a discussion of the
completeness property of different systems of discrete sources for surface
fields approximations, (iii) a derivation of an infinite set of integral
equations for the surface fields in a variety of discrete sources, and (iv) a
formulation of the null-field scheme as an approach aiming to construct
an approximate solution to the scattering problem and to derive the T
matrix. The key point in proving the uniqueness results is the equivalence
between the null-field method and surface integral equations techniques.
Our main goal is to provide a rigorous analysis of the method; however,
in order to facilitate the readability and understandability of the paper,
the mathematical proofs are given in appendices. We would like to
emphasize that the T-matrix concept is central to the superposition T-
matrix method as well as to finding orientation-averaged optical ob-
servables, but is secondary to the subject of this paper. This paper is all
about finding the solution of the scattering problem for a given fixed
object with specific size, shape, and orientation.

2. Basic results of the electromagnetic scattering theory
2.1. The transmission boundary-value problem

Let D; be a bounded three-dimensional domain with a smooth closed
boundary S, and a simply connected exterior D;. The surface S is assumed
to be of class C2, i.e., if r(u,v) is a parametric representation of S with
parameters u and v, then r(u,v) is twice continuously differentiable. We
denote by n the outward pointing unit normal vector to S, and by ¢ and
U, the electric permittivity and magnetic permeability in the domain Dy,
t = s,1, (i.e.,, D, = Dy, D;) respectively. The wavenumber in D; is k; =
ko /€, where ko is the wavenumber in free space. Throughout our
analysis we assume a time dependence of exp( — jot), wherej = —1,
is the angular frequency, and t is the time.

Electromagnetic scattering by a dielectric particle is described by the
following transmission boundary-value problem.

Given {Eo,Hy} as the full solution to the Maxwell equations representing
the impressed incident field [21], find the scattered and internal electromag-
netic fields {E,, H} and {E;, H;} satisfying the Maxwell equations

V x E, = jkou,H,, V x H, = —jko&,E, Q)
in D;, t = s,i, and the two transmission conditions

nxE=nxE, (2)
nxH=nxH; 3)

on S, where the total fields in Dy are given by
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E=E, +E;,, H=H, + H,. 4

In addition, the scattered field {E, H;} must satisfy the Silver-Miiller ra-
diation condition

- 1
r X /uH; + /eE; =0 (;), as r — oo, 5)

uniformly for all directions T = r/r.

In general, the existence and uniqueness of the solution to the elec-
tromagnetic boundary-value problems is established by the method of
integral equations. The main advantage of using the surface integral
equations method (in the case of a uniform scattering object) lies in the
fact that this approach reduces the problem defined over an unbounded
domain to one defined on a bounded domain of lower dimension, that is,
the boundary of the scatterer. The unique solvability of the transmission
boundary-value problem is stated by the following result (§23 of
Ref. [22]).

Fornx Eg, nx Hp € Tg'"(S), the transmission boundary-value problem
possesses a unique solution Es, Hs € C'(Ds) N C%%(D;) and E;, H; €
CY(Di) N C%«(D;) with the boundary values fi x Es, & x Hy € T3(S) and
nx E;, 0 x H; € TYY(S).

Here, C%%(G), 0 < a < 1, is the Banach space of all uniformly Holder
continuous vector functions on G, where G is a bounded closed subset of
R3, and T5(S), 0 < a < 1, is the Banach space of all uniformly Hélder
continuous tangential vector functions with uniformly Holder continuous
surface divergence on S [23,24]. Precise definitions of the function
spaces that are relevant to our analysis are provided in Appendix 1.

Note that the Holder continuity of the boundary data is required for
the integral equation treatment of the boundary-value problems. Also
note that the straightforward use of potential theory to formulate surface
integral equations for the classical boundary-value problems of the
scattering theory leads to equations that are not uniquely solvable at
eigenvalues of certain interior boundary-value problems. One such a
problem is the interior Maxwell boundary-value problem in D;. In fact, it
can be shown that for any domain D;, there exists a countable set of
positive (real) wavenumbers k;, called eigenvalues, accumulating only at
infinity for which the homogeneous interior problem has nontrivial so-
lutions. In the following, the set of eigenvalues of the interior Maxwell
boundary-value problem in D; is denoted by A(D;).

2.2. Stratton-Chu representation theorem

To derive the null-field equations we make extensive use of the

Stratton—-Chu representation theorem. Applied in D; to E;,
H; € C'(Ds) N C(Dy), it yields (Theorem 6.6 in Refs. [24])
( E-"ér)) —Vx / e(F)g(k, r,¥') dS(r')
N
o / n [ rED
TARAE: /Sh,(r ek, r,¥) dS(F), (r < D,_) ©)
and
H\(r) / J J
0 =V x [ h(r)g(k,,r,r') dS(r)
N
~ I gxvx /e ()glk, 1) ds@), (T €D @
k()H‘ p e g (R R ) r e Dl b

where e, =n x E; and hy =n x Hy are the electric and magnetic
tangential fields, 0 is the zero vector, and

SR
kr,r'y=— R=|r—r
glkr )= R=[r=1
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is the free-space Green's function satisfying the scalar Helmholtz equa-
tion with the wavenumber k = k. /€x, i.e.,

Aglk,r, ') +k2g(k,r,¥')=0 for r#7v. (8)

In Egs. (6) and (7) we use a compact way of writing two formulas (for
r € D;and r € D)) as a single equation. An application in D; to the incident
field {Ey,Hy} (with the exterior material) yields

(e ) =7 [etereteare) ast)

+k0j£‘VxVxAh(,(r’)g(k,,r,r’) ds(r), (:2’;) ©
and
(_ 0 ):Vx/h(,(r')g(k‘,‘,r,r’) ds(r)

Hy(r) s

—kuj”.‘VxVx/Se(,(r’)g(k‘.,r.r') ds(r), (:23) 10)

where ¢) = n x Eg and hy = n x Hy. Adding Egs. (6) and (9), and Egs.
(7) and (10), we obtain

(—Eﬁ((,z)) =Vx /S e(r')g(ks,r,x') dS(r')

! / / / rebD
+k“£‘_VxVx/sh(r)g(k_\..r,r) as(r'), (reD,-) an
and
H,(r) \ _ / ) ) ,
(—I-L.(r)) =Vx Sh(l‘ )g(ks,x,r') dS(r)
) / / / re Dy
_ "K‘VXVX/Se(r Jelhamr) S (reD.-)‘ 12)

respectively, where e = ¢; + ¢y and h = h, + hy are the tangential com-
ponents of the total field on S. Finally, the application in D; to E;, H; €
C!(D:i) N C(Dy) gives (Theorem 6.2 in Ref. [24])

(—Ig(r)> =Vx Aef(r’)g(ka.r, r') ds(r)

+ﬁv x V x /Sh,-(r')g(k,,r, YY) ds(r), (: 2 g:) s
and
(‘I’?’ )=V X /hi(r,)g(k,‘.r. ) ds(r)
i(r) g
_ﬁiv o Aei(r/)g(kh nr) ) (: c g:- ) a4

where ¢, =n x E; and h; = n x H;.
2.3. Surface integral equations

There is a direct connection between the null-field method and the
surface integral equations method, which can be used to prove the
unique solvability of the null-field equations [5,6,25]. For this reason, we
summarize below the surface integral equations for the transmission
boundary-value problem in the electromagnetic scattering theory.

The key quantity in the potential theory is the vector potential A,
with an integrable surface density a. This is given by

A,(r) :/a(r’)g(k,r. r)ds(r'), reR® -, (15)
s
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and it is apparent that the Stratton-Chu representation theorems are
formulated in terms of the vector fields V x A, and V x V x A,. For
deriving surface integral equations for the electromagnetic fields, the
tangential components of the vector fields V x A, and V x V x A, must
be evaluated on S. The boundary values of these vector fields on S are
expressed in terms of the magnetic and electric surface integral operators,
defined by

(Ma)(r) = A(r) x [V X /a(r’)g(k,r, v) dS(r’)], res, (16)
and
(Pa)(r) = A(r) x {v XV /a(r’)g(k, " r’)dS(l’)] . res, 17)

respectively. More precisely, for continuous tangential densities, i.e.,
a € T(S), we have (Theorem 6.11 in Ref. [24])

Tim B(r) x [V x A, (£ 1)) = (Ma) () i%a(r). res, (18)

while for a € T3%(S),

’lir(P n(r) x [VxVxA,(r+hn)]=(Pa)(r), res. (19)

The problem of electromagnetic scattering by a dielectric particle can
be reduced to a pair of coupled integral equations for the tangential fields
e and h. These equations are derived from

1. the null-field equations (11) and (12) in D;, and
2. the null-field equations (13) and (14) in Dy, bearing in mind the
boundary conditions ¢; = e and h; = h.

Thus, considering Eqs. (11) and (12) for r € D;, and passing to the
boundary, we obtain

1 J

(EI - M) e— kue,P"h =e, (20)
1 J
~Z-M, )h+-—Pe=h,, 21)
2 k()[l.Y

while considering Egs. (13) and (14) for r € Dy, passing to the boundary,
and using the boundary conditions e¢; = e and h; = h, we obtain

| .
~T+ M )e+Ph=0, (22)
2 koé;

<1I+M,->h ~J pe=o, (23)
2 kop;

where 7 is the identity operator. The surface integral operators M; and
Py are given by Egs. (16) and (17) with the wavenumber k; = ko /ey, for
t = s, i, respectively. To proceed, we must choose two equations or two
linear combinations of the above four surface integral equations for the
tangential fields e and h, i.e.,

Table 1

Choice of constants for the surface integral equations.
Formulation ay a ay A P P
E-field 1 0 0 0 0 1
H-field 0 0 1 0 1 0
Combined field 0 1 -1 1 0 -1
Mautz-Harrington 0 1 - p 1 0 —-a
Miiller 0 My Hi £ 0 &
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a,Eq.(20) + a4,Eq.(21) + a3 Eq.(23),

B1Eq.(20) + B,Eq.(21) + B:Eq.(22).

where ¢; and g;, i = 1,2, 3, are constants to be chosen. Harrington [26]
describes several possible choices, as shown in Table 1.

For all these choices, we always have the existence; e and h are just
the tangential components of the total field, and we know that the
transmission problem always has precisely one solution. However, the
question of uniqueness is less obvious.

The Miiller system of surface integral equations, corresponding to the
choice a1 =0, a2 = g, a3 =, fy =€, fo =0, and fi3 = ¢, i.e.,

I I _ j e

[5 M, e,-M,->]e e PP @)
1 j

ST M, M) bt — (P —Ple=—ton,, (25
[2 iy Mk )} Kol T ) =i

is uniquely solvable. More precisely, we have the following result (§23 of
Ref. [22], and Section 6.27 of Ref. [27]):

For f = [eg,ho]" € TJ%(S), where T3(S) = T5(S) x T9(S), the
Miiller system of surface integral equations, written in matrix form as

(%I—lC)u:f on S, (26)

where u = [e, h]T , T denotes transpose, and

M) A p_p
e BMmaM) (PP
K= , (27)

— (P, P —— (u M, — M,
kn(%“‘ﬂ.)( ) /4.‘-+u,-(”' #iMi)

has a unique solution u = [e,h]" € Ig"’(s).

The combined-field formulation also gives a uniquely-solvable system
of equations [28], while the Mautz-Harrington system is uniquely solv-
able, provided that the constants a and f are such that af, where the bar
notation means complete conjugate, is real and positive [26,28].
Furthermore, the E-field system of surface integral equations (20) and
(22) is uniquely solvable if and only if ks ¢ A(D;) [25,26,29].

2.4. Null-field equations

The null-field method relies on the null-field equations for the electric
fields (11) in D; and (13) in Ds, while taking into account the boundary
conditions e; = e and h; = h. Thus, given {Eo, Ho} as an entire solution to
the Maxwell equations representing the impressed incident field, the aim
is to compute the tangential fields e and h from the equations

Eo(r) + V x / e(t)g(ks, 1, ') dS(F)

k VxVx/h(r)g(k r,r')dS(r')=0, reD;, (28)
0Es

V x /e(r’)g(k,».r, r') dS(r')

+k—v XV x / h(¢)g(k, r,¥) dS() =0, reD, (29)
0Ei A

or equivalently, by making use on the Stratton-Chu representation
theorem for the incident field in D;,

Vx/[e

(') ks, x,x') dS(r')
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+kje V x V x /[h(r’) —hy(r')]|g(ky,r, ') dS(r') =0, reD;, (30)
0€s s

X /e(r’)g(k,-,r, r') dS(r')

+KV x V x /gh(r’)g(k,», r,r') dS(r')=0, reDb,. (31)

To prove the unique solvability of the null-field equations (28)
and(29), we use the equivalence between these null-field equations and
the Miiller system of surface integral equations.

Let the tangential fields e and h satisfy the null-field equations (28)
and(29). Then, e and h satisfy the Miiller system of surface integral equation
(26), and conversely.

Consequently, from this result, which is proved in Appendix 2, and
the unique solvability of the Miiller system of surface integral equations,
we infer the uniqueness of the tangential fields e and h satisfying the null-
field equations (28)—(29) for all wavenumbers k;. Note that although, the
null-field method seems to be similar to the E-field formulation of the
surface integral equation method (both methods use Eq. (11) in D; and
Eq. (13) in D), they are equivalent only when k; ¢ A(D;) (Appendix 2).

Once the null-field equations are solved for the tangential fields e and
h, the scattered and internal fields can be computed from Egs. (11) and
(12) for r € Dy, and from Egs. (13) and (14) for r € D;, respectively.
Moreover, for the electric and magnetic far-field patterns defined
through the relations (Theorem 6.8 in Ref. [24])

jksr
£ = [Ea®+0(})] 1= (32)

elksr . 1
H,(r) = p H,(T) + 0 e (33)
and satisfying
H, ()= \/;:F X B (T), T Eo(T) =T H,,(r)=0,

we have the computational formulas

E..(F) =J;‘"—’-; / {? x e(r') + \/’::f x [h(r') x 7] }e KT gs(1), (34)
——/{ T x h(r \/7r x [e(r') x F]}e korr ds(r'). (35)

From the Stratton-Chu representation formulas for {E,, H} and {E;,
H;}, as well as from the representation formulas (34) and (35) for {E,,
H;.}, the following estimates can be derived.

For the scattered and internal fields, we have the estimates

B, < €

ells ||h||zAs)’ 1=5,1, (36)

g, < el + ], ), 1=, @7

00,6y ||2 N

where G, is a closed subset of D, and the constants C,, C;, > 0 depend on S and
G;. Moreover, for the far-field patterns we have the estimates

[Eswo(F)| < Cows((le]],5 + [0, ): (38)

Hoaw (F)] < Chen([[e]], 5+ [[h]5), (39)

for dll Tt € Q, where
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kg : ks s
Cooo =—max| 1, Hs , Cheo =—max/| 1, s s (40)
4n ] 4n H

5

and Q is the unit sphere.

An important consequence of this result, which is proved in Appendix
3, is that we can approximate the electromagnetic fields {E;, H;} and
{E;,H;} in D; and D;, respectively, if we are able to approximate the
tangential fields {e,h} on S.

3. Null-field method with discrete sources
In the null-field method with discrete sources

1. the tangential fields e and h are approximated by a complete system of
discrete sources, and

2. an infinite set of integral equations for e and h is derived in a variety
of discrete sources by means of the null-field equations (30) and (31).

As discrete sources localized, distributed and multiple vector spher-
ical wave functions, systems of vector Mie potentials, and magnetic and
electric dipoles will be considered. Note that distributed spherical vector
wave functions (lowest-order multipoles) have been used by Eremin and
Sveshnikov [30] in the framework of the discrete sources method to
analyze the scattering by axisymmetric particles, while multiple spherical
vector wave functions (multiple multipoles) have been introduced by
Hafner [31] in the framework of the multiple multipole method. Eremin
[32] has shown that for oblate axisymmetric particles, the use of
lowest-order multipoles with origins located in the complex plane still
decouples the scattering problem over the azimuthal modes and in-
creases the stability of the computational scheme.

3.1. Systems of discrete sources and infinite sets of null-field equations

Let us consider the vector functions M (k,r) and N (k,r), forqg =1,3
and t = s,i, with the properties
1. V x M = kN and V x NI = kMY,
2. M! and N} are finite at the origin, and
3. M3 and 9 satisfy the radiation condition,
where the significance of the multi-index a will be clarified later on. In
addition, denoting by T2(S) the Hilbert space of all square integrable

tangential vector functions and by T*(S) the product space T2(S) x
T2(S), we require the following.

1. The systems of tangential vector functions

0

nox M (k) || x (ko)
0 ’ 0 —j\/gﬁ x ML (k; )
g 1)
0 ®
k; & A(D;)
j\/; n x N, (k) -
and
noxnx M (k) noxonx 9 (ko) ®
J\/itnxnxﬂtﬂ(”-) J\/itnxnxim (ks )
. (42)
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where the superscripts 3 and 1 correspond to the subscripts s and i, respectively,

are complete and linearly independent in the product space T*(S) = T(S) x
T4(S).

2. If the tangential fields e and h satisfy the null-field equations (30) and
(31), then e and h satisfy the infinite set of null-field equations

/ [(e—ep) - M(k,- )+ j\/lg(h —hy) - 90 (k, - )} ds =0, (43)

N

/ [(e—e) - (k) +] \/?(h —hy) - M (k, - )} ds=0, (44)
N s

/ [e‘ﬂ.li-(k )+J\f Rk, - )} s =0, (45)
S

/ [e"Jl,';(k,“)+ j\/?h-ﬂ.'t},(k,')] ds =0, (46)
s i

fora=1,2, ..., and conversely.
For the definition of a complete system of functions and some basic re-
sults from functional analysis we refer to Appendix 4. It should be
pointed out that the unique solvability of the infinite set of null-field
equations (43)-(46) for all wavenumbers follows on one hand, from
the first result stating the completeness of the system of tangential vector
functions (42), and on the other hand, from the second result and the
unique solvability of the null-field equations (30) and (31).

In particular, M? and NY stand for the following systems of discrete
sources [20]:

1. The localized vector spherical wave functions (localized vector
multipoles)

1

W (kr) =M, (kr) = ——r
alke) = (kr) 2mn(n + 1)k

mn

v x [uf, (k)] (47)

N (kr) =N? (kr) =

mn

g=1,3, (48)

mn

kV x MY (kr),

where @« = (m,n) and @ = (—m,n) forn=1,2,...andm = — n,...,n;
2. The multiple vector spherical wave functions (multiple vector
multipoles)

M (kr) =M, [k(r —rg,)], (49)

N (kr) =N [k(r

o [k(r=x0,)], g=1,3, (50)
where {rg, };"’1 is a finite set of points (poles) distributed in D;, N, is the
number of poles a=(m,n,p)and @ = (—m,n,p) forp =1,....Np,n =
1,2,..,andm = —n,...,n;

3. The distributed vector spherical wave functions (lowest-order vector
multipoles)

M (kr) = MY

m,|m|+1

[k(r — z,Z)], (51)

mZ(k") m |m\ [ I[k lei)]v q= 1 ) 3, (52)
where {z,}, is a dense set of points situated on a segment I',CD; of the
z-axis, Z is the unit vector in the direction of the z-axis, [ = 1 if m = 0 and
l=0ifm#0,a=(m,n)anda = (—m,n)forn=1,2,...andm = —n,...
1

4. The distributed vector Mie potentials
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M (kr) = M (kr) _—Vg( 9.r) xr, (53)

‘Jlji(kr):f\/’ff(kr):%v x Mi(r), ¢=1,3, (54)
where {r3}~ | is a dense set of points distributed on a surface S~ enclosed
inD;, {r}}; | is a dense set of points distributed on a surface S* enclosing

Djyanda=a=nforn =1,2,...;

5. The modified distributed vector Mie potentials; these are given by
Egs. (53) and (54) but in which the system {g(k,r{,r)}, ; is replaced
by the more general system

fi(r)= k/x// (r)g(k,¥',r) dS(r), reR*\s*, (55)

where the sets of functions {y3} , and {y.}. | are complete in L%(S")
and L%(S"), respectively, and L?(S) is the Hilbert space of all square
integrable scalar functions on S.

Another systems of vector functions used in the null-field method
with discrete sources are [20]:

1. the distributed magnetic and electric dipoles

M (kr) =MY (kr):F

np

Ve(k.rd,r) x 7, = v < [etkrnz,]. 66

N (kr) =N¢ (kr) =

np

—V x MY (r),

np

=1,3, (57)

where {r3} " | is a dense set of points distributed on a surface S~ enclosed
inD;, {r}}; | is a dense set of points distributed on a surface S* enclosing
D;, 7, and 7], are two tangential linear independent unit vectors at the
pointrf,and a =@ = (n,p) forp=1,2andn =1,2,...;

2. the modified distributed magnetic and electric dipoles

MY (kr) =M (r) = x/wg(r')g(k.rﬁr) ds(r'), re R*\s*, (58)

N (kr) =N (kr) = V x Mi(r), (59)

3\ ® 1
\l‘a a=1 and {‘[la

where the systems of tangential vector functions { a=1

are complete in T2(S~) and T?(S*), respectively.
Note that we can define the vector functions My, (kr) and Ny (kr) by

M, (kr) = Vg(, (k.xl.r) x 7, (60)
N, (kr )——V x M, (r), (61)
where

kR
go(k, -J)f‘"(R) R=|r—v|, (62)

and now {r}}>  is a dense set of points distributed on a surface S~
enclosed in D;; thus, the discrete sources are distributed on an interior
instead of an exterior surface. For the systems of discrete sources based
on magnetic and electric dipoles, the following results are valid.

1. Each of the systems of tangential vector functions
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- 0 - ®
n x M (k; -
k¢ AD)p ,  (63)

- Hi = a=1

nxnx

X M (ki) ®

W , (65)
/= nxnx‘]l“( ki)
- Esi a=1

o x 9 (k)

(iv). , (66)
J‘lb”nxnxwi (ksi )
5,0 a=1

where the superscripts 3 and 1 correspond to the subscripts s and i, respectively,
are complete and linearly independent in the product space
T2(S) = T%(S) x T2(S)

ar 0 7
{ n x N, (ki ol T kigA(D,-)} . (69
GE (k-

‘:

2. If the tangential fields e and h satisfy the null-field equations (30) and
(31), then e and h satisfy one of the following infinite sets of null-field
equations

/ [(e—ep) - M(k, - )+

/ [e ML (k) + j\/; 0L (k- )} ds =0, (68)

) (k)| 5= (©7)

or

/ [(e—ep) Mk, ) +]j %(h —hy) - W (k, - )} ds=0, (69)
N s

/[em;(k, 3) +j\/?h~§l]3,l,(ki . )} ds =0, (70)

S U

fora =1,2,..., and conversely.

The explicit expressions of the systems of discrete sources (47)-(48),
(49)-(50), (51)-(52), (53)-(54), and (56)—(57) are given in Appendix 5,
while the distributions of their poles are illustrated in Fig. 1. Some
general rules regarding the choice of the discrete sources are given
below:

1. In the case of axisymmetric particles, multiple and distributed vector
spherical wave functions with poles located on the z-axis (axis of
symmetry) are appropriate. The reason is that the scattering problem
can be reduced to a sequence of subproblems for each azimuth mode.
However, it is obvious that these systems of discrete sources
adequately describe the geometry of prolate particles, but not of
oblate particles. In order to make them suitable for the latter type of
particles, the procedure of analytic continuation of the spherical
vector wave functions onto the complex plane along the source co-
ordinate Z is considered. The complex plane (Rez,Imz) with Rez,
ImZ € R, is the dual of the azimuthal plane ¢ = const, i.e., (p, z) with
p > 0andz € R, and is defined by taking the real axis Rez along the z-
axis. In Fig. 2 we illustrate the complex plane and the curve X, which
is the image of the generatrix X in the complex plane. The program-
ming effort for computing the spherical vector wave functions with an
origin located in the complex plane is not very high, because the
recurrence relations for the angular functions of complex argument
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(€)

Fig. 1. Distributions of the poles of the localized vector spherical wave func-
tions (a), multiple vector spherical wave functions (b), distributed vector
spherical wave functions (c), distributed vector Mie potentials (d), and distrib-
uted magnetic and electric dipoles (d). The domains delimited by dotted lines
indicate the regions where the null-field condition is imposed explicitly.

are the same as the recurrence relations for the angular functions of
real argument.

2. In the case of non-axisymmetric particles, multiple vector spherical
wave functions, distributed vector Mie potentials, and distributed
magnetic and electric dipoles are appropriate. The distribution of the
poles on auxiliary surfaces which say are homothetic with the particle
surface will properly describe the particle geometry; in particular,
they will enlarge the domain in which the null-field condition is
imposed.

3.2. Null-field scheme

For a numerical implementation, the infinite set of null-field equa-
tions (43)-(46) is truncated at some order. Moreover, taking into account
the boundary conditions e = e¢; and h = h;, we approximate e and h by the
system of tangential vector functions (41). Because for k; ¢ A(D;), this
system is complete in T%(S), it follows that for any ¢ > 0, there exists an

and {c/,,dg}

such that

integer N = N(e) and the sets {c}/, d -

N
/f}/i 1

[y = [fe e i3, + I~ o[ <.
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Imz

Fig. 2. Complex plane and three poles of the multiple vector spherical
wave functions.

where u = [e.h]T, uy = [eN,hN]T, and

83

eN:Z[

=

e

on S. The coefficients {c}), d"’ }, ., and {c/, dN}ﬂ X

truncated systems of equations (43)-(44) and (45)-(46). Inserting the
representations (71) and (72) into the truncated system of null-field
equations (45) and (46), and making use on the orthogonality relation

= M (k; ) «l %N (k -) 7o
[{[n x My (ki -)] - |:‘R%(k, 3 + [A xRy (k; )] - [‘JJR,I—,(k, )] } ds= [0],

(73)
forany a,f =1,2,...

0 x My (ki) +dyn x Ry (ki )], (71)

& xR (k) +dy i x MY (k)] (72)

are computed from the

, we find

N _ N q N
¢y =c¢; and dN dy,

provided that the matrix

( / [ <! (k)] ~9Jl{'-,(k,--)d5)iﬂ:] ( / [ x 9 (k)] .ma).,(k,..)ds>:ﬂ:l

N N

(1 [n ><le:,',(/<,~)]-~th(k,--)ds)wzI (l [0 9 (ki )] - 9 (ki )als)w=1

is nonsingular. Thus, the coefficients {c’;’ ,df)’ } which determine ey

p=1’
and hy according to

=S A< mye) —j\/gﬁ <9 (k)|

hy p=1

+dN[n X 9 (k) — j\/gﬁ x mt},(k,-.)]}

are computed from the truncated systems of null-field equations (43) and
(44). Using the expansion of the incident field in terms of regular vector
spherical wave functions

74)
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0
E() 5 aa
a=1

we find that the resulting matrix equation is

(kst) + baNJ (k,1)], (75)

()., (aa)s
Quvth k)| | = Q) 76)
) (b))
with
(Q'(lNu/i)(,/; 1 (Q'HN(:/)),,// 1
QB]N(k.ﬁki):
N
( i:Nu/})m/j:l (Qleu/J),,/, 1
and

Ol = ik /{ i MY (k)] -9 (ks ) + m[A x Ny (k)] - Mk )} dS,
(77)

Ot =ik /{ [0 O (K; )] - (K, -) + my [0 x My (ki - )] - M (k,-) ) dS,
(78)

Qv =ik /{ (10 My (ki - )] - 92 (ks - )+ e [0 Ry (ki )] - M (k,-) ) dS,

(79)

)] - (k, - ) -+ me [0 My (ki )] - (K, )} dS,

S =6 [ {3k

(80)

where m; = ki/ks = \/¢i/¢; is the relative refractive index of the particle
with respect to the ambient medium. The matrix QY (ks,ks) has the
same expression as the matrix Qs;y(ki, ki), but with the vectors M,l,(ks )
and N}, (ks -) replacing the vectors 9]3,1, (ki-) and ‘Jl/l,(k,- -), respectively. The
physical meaning of the representation (74) is that the surface fields e; =
e and h; = h are the tangential components of the electric and magnetic
fields E; and H; on the surface S, respectively.

For the systems of discrete sources based on magnetic and electric
dipoles, the tangential fields can be approximated, for example, by (ac-
cording to the completeness of the system (63))

1o M (k; )
[ ] Z c) { } (81)

€
=1 'nxﬂt
J\/; (ki)

while the coefficients {c}}’ }2’:1 are determined from the truncated system

of null-field equation (69).
In principle, once the approximate tangential fields ey and hy are
known, an approximate scattered field can be constructed as

En(r) =V x /leN(r’)g(k.\,.r, r') ds(r')
(82)

/ v(r)g(ks,r,x') dS(r'), r € Dy,

06
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so that outside a circumscribing sphere, we have the expansion
En(r) =Y ['M}(kr) + g)N) (k)] (83)
a=1

with

N NL k, -
fa :jkf/ oy | Nalks?)
M (k, -
+j\/EhN~ alks ) dS,a=1,2,...
& NL(k,+)

Similarly, an approximate electric far-field pattern is given by

EmN(F):Z{—,';/V{erN(r) \/’T‘rx[hN( )xﬂ}e KT gs(e),  (85)

for which we have the expansion

(84)

Excon Z (120 (F) + jg B (F)] (86)
where
lil,,(/l:) =m,, (F) =(- j)"‘ ]mmn (i:)* (87)
1, (F) =0, (t) = (—j)" ! n,, (), (88)

and my,, (T) and n,,(T) are the normalized spherical harmonic vectors. In
practice, for computational reasons, the series (83) and (86) are
approximated by their partial sums, i.e.,

E,u( Z[f”M‘ ) + gy N; (k)] (89)

a=1

[ (F) + jgh i (F)] . (90)

. 1
E.\'mNM(r) = k_

_Mz

The above development enables us to introduce the T matrix of the
particle. The null-field scheme corresponds to the choice M = N.
Inserting the representations (74) into Eq. (84) fora =1,...,N, we obtain

()i (@),
=Qualkk) | 2] 1)
(&) s

where the matrix Qqin(ks,ki) has the same expression as the matrix
Q31n (ki, ki), but with the vectors ML (k; -) and NL(k; -) replacing the vec-
tors M2 (k, ) and 3 (k, -), respectively. Furthermore, combing Egs. (76)
and (91), we find that the transition matrix Ty relating the scattered field
coefficients to the incident field coefficients, i.e.,

() ()i
=Ty
(&) (CHM
is given by

T = Quu ke, ki) [Qary (ke k)] ' QS (ki K ).

For localized vector spherical wave functions, we have le ~ =In,and
we are led to the standard representation of the transition matrix. In this
case, the null-field scheme coincides with the T-matrix scheme of
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Waterman.
4. Discussion

In two technical reports [33,34], Dallas provided a rigorous mathe-
matical study of the basis properties of spherical wave functions, as well
as, an analysis of the convergence and numerical stability of the (second)
Waterman scheme for the approximation of the acoustic field scattered
by a hard obstacle [3]. Besides the mathematical treatment, Dallas
signalized some confusions and misinterpretations that appeared in the
literature regarding the formulation of the null-field method. In this
context he mentioned that “many of these sorts of errors and mis-
conceptions have not been recognized and corrected by succeeding
writers after appearance once, but instead were repeated and propa-
gated, making their eventual eradication far more difficult’’. Because the
work of Dallas is less known to the physics community (the reports have a
purely mathematical component), we present below his criticism,
adapted to the case of electromagnetic scattering by a dielectric particle.

In the conventional null-field method with localized vector spherical
wave functions, the null-field equations read as

jk? / [e(r').Mg(k_\.r') + j\/?h(r’)-Ng(k,\.r’) dS(r’)] = —ay, (92)
N 5

2 [ et Nofhr) 5y [Enie) M) a5(e) | = b, ©3)
N s

for @ =1,2,..., while the expansion coefficients of the scattered field

E,(r) =) [uM;(kr) + 2N} (k;r)], (94)

a=1

are as in Eq. (84), that is,

{ ] :jkf/ e-
8a Mg (ks )
(95)
Mé(kx )
N dS,a=1,2,...
O Nik )

The standard justification of the T-matrix scheme relies on the
assumption that the vector spherical wave expansion of the internal field

Ei(r)=""[c;M)(kr) + d;N}(kr)], (96)

p=1

which is valid inside the inscribed sphere, is also valid up to the
boundary. From this assumption and the boundary conditions, we obtain

n(r) x M,l,(k,r)

—j\/gﬁ(r) x Nj(kir)

n(r) x Nj(kr)

. [Ei~
- ﬁn(r) X ML ()

e(r) 83

AL

h(r) p=1

+d ©7)

and then

(C/f)/eill (“”)20:]
31\ i 00 == 0 4 98
Qulk k) [(d/f)/;l ] [ :| %
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and

(fa) s (C/’)/‘:;l
= k\-.k,' 0 . 99
|:(gu):r°1:| Qll( : ) |:(d/l)/11:| ( )

Due to the linearity of the Maxwell equations there is a linear rela-
tionship between the scattered and incident field coefficients expressed
in terms of the transition matrix as

e |leie]
From Egs. (98)-(100), we find

TQs: (ks ki) = — Qi (ks ki), (101)
and so,

T=— Qui(ks ki)[Qs1 (s )] (102)

The matrices Qs (k, ki), Qq1(ks,k;) and T are of infinite dimension,
and in order to obtain a practical solution, the classical Abschnittsmethode
for constructing an approximate solution to an infinite system of linear
equations in a space of sequences (or infinite matrices) is applied [35,36].
The above justification of the T-matrix scheme contains several
misleading statements.

1. The representation (97) means that the system of tangential vector
spherical wave functions is a basis. However, this system of vector
functions is complete and linearly independent, but does not have the
much stronger property of being a basis, unless S is a spherical surface
centered at the pole of the spherical solutions. A counterexample is
given in Appendix 6; other arguments can be found in Refs. [33,37].
In fact, there is a general failure in the literature on this method to
assert the existence of infinite-series expansions in terms of a
sequence which is merely known to be complete. “This is frequently
reflected in the consistent omission of the limits of summation, along
with the interpretation of a summation as a finite-sum approximation
at one point, but as a convergent infinite-series representation at
another point, according to the exigencies of the current argument’’
[34].

2. The above derivation is completely formal; the product indicated on
the left-hand side of Eq. (101) is intended as (convergent) infinite-
matrix multiplication and it is not known exactly if the infinite in-
verse matrix Q,; exists or the Abschnittsmethode can be applied to
generate convergent approximations. It is indeed remarkable to find
that the T-matrix equation does in fact turn out to hold for some
particle shapes and sizes.

For these reasons, “the null-field method should be regarded as an
approach aiming to approximate quantities in the scattering process
other than the transition matrix directly; accordingly, the appearance of
the transition matrix in the description of the method should be
considered as natural but nevertheless peripheral to its foundation’” [34].

The emphasis placed in Refs. [1,3,38,39] on the transition-matrix
aspect of the algorithm has apparently led to a common use of the
term “the T-matrix method’ in referring to the Waterman method. In
fact, the algorithm is one of many schemes that might be called “T-matrix
methods’’. More precisely, any method, which delivers an expansion of
the far-field pattern in terms of spherical harmonic vectors, can be cast
into the form of a T-matrix method. The reason is that for each incident

field representing a vector multipole M/l, (ksr) or N},(ksr). the expansion

coefficients of the corresponding far-field pattern {fa,g,,};;':l form the
p-column vector of the transition matrix Ty. In this regard, surface



A. Doicu, M.1. Mishchenko

integral equations methods, in which the far-field pattern is computed
from the Stratton-Chu representation theorem for the scattered field
(once the surface fields are known) [40,41], or volume integral equations
methods, in which the far-field pattern is computed from the far-field
representation of the Green function (once the field inside the particle
is known), fall into this category.
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Let G be a bounded closed subset of R® that can be identified with either the bounded domain D;, the unbounded domain D; = R® — D;, or the
boundary S. We consider the function spaces C(G), C*%(G), and L*(G) defined as follows.

1. C(G) is the usual Banach space of all continuous (complex-valued) vector functions defined on G with the supremum norm

|la]. ¢ =supla(x)
XeG

[}

where for a(x) = [a;(x), ay(x), as(x)],

la(x)| = y/a(x) -2 = /Jai 0 + lax(0)F + fas (0

is the magnitude of the vector a(x), or the Euclidean norm in C3.

2. C%%(G), 0 < a < 1, is the Banach space of all uniformly Hélder continuous vector functions on G,

€*(G) = {alla(x) — a(y)| < Clx—y|" for all x,y€G}

endowed with the norm

ja(x) — a(y)|

l[alluo=supla()| + sup =

X.YEG, X#y

If G is unbounded, then by a € C%?(G) we mean that a is bounded and the Holder inequality is satisfied. Obviously, if a € C%*(G), 0 < @ < 1, then a is

uniformly continuous on G.

3. L%(G) is the Hilbert space of all square integrable vector functions on G, i.e.,

L*(G)= {a|/u|a(x)\2 dG exists}.

L%(G) is the completition of C(G) with respect to the square-integral norm

\[al], = (Lh(x)l2 dG) 1/2

induced by the scalar product

(ab),= [alx)b* () 4G.

For tangential vector functions on S, we consider the function spaces T(S), T*“(S), TS*(S), and T?(S). These are defined as follows [23,24].

1. T(S) is the Banach space of all continuous tangential vector functions on S,

T(S)={alacC(S), n-a=0},
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endowed with the norm || ||_.

2. T%%(S), 0 < a < 1, is the Banach space of all uniformly Holder continuous tangential vector functions on S,

7(5) = {alac C**(5). @-a=0},

endowed with the norm || -| |rx.S'

3. Tg‘“(S), 0 < a < 1, is the Banach space of all uniformly Holder continuous tangential vector functions with uniformly Holder continuous surface
divergence on S,

T3°(S) = {alac T°%(S), V,-aeC®(s)},

equipped with the norm

||a||a.d.S = HaHus + ||v~“ ' a“

as’

where V is the surface divergence (for the definition of the surface divergence we refer to Ref. [24]).

4. T2%(S) is the Hilbert space of all square integrable tangential vector functions on S,
T*(S)={alacL*(S), n-a=0}
with the scalar product (a,b), 5. T?(S) is a subspace of the Hilbert space L?(S).

The above function spaces are relevant for analyzing of the direct electromagnetic scattering boundary-value problem or the exterior Maxwell
boundary-value problem. For the transmission boundary-value problem, the pertinent function spaces are the product spaces

T(S) = T(S) x T(S),
T(S) = T(S) x T°(5),
T(S) = T3(S) x T3 (S),

and
TH(S) =T*(S) x T*(S).

The scalar product in T*(S) = T2(S) x T2(S) is defined, for a = [a;,a,]" € T*(S) and b = [by,b,]" € T*(S), by

(ab),, = < [:‘} [gl]>m=<a,,b.>2_s+ (3.b), 5. (103)

so that the norm in T*(S) is

= (D,

= (an ), 5+ (an, @),

2 2
= Hal||2.S + ||22H2.s'

In the convergence analysis of the null-field method we will also consider the product space I* = I2 x 2, where I2 is the Hilbert space of square-
summable sequences. The scalar product in I> = 2 x & is defined, for a = [a;, a,]" € I? and b = [by, b,]" € I with a; = [(a),]" = [an, i, ...] € I and
bi= [(bi)>,]" = [bu,bi2,..] € B fori = 1,2, by

(23,

= (a1, by), + (a2, ba),

<a, b)z

(a10b1a + @aabia), (104)

NgE

a

so that the norm in I? is

||a||§:<{:;], [Z;Dz:(ahal)z + (a2, 22),

11
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0

} ‘alu

a=1

Appendix 2

In this Appendix we prove the equivalence between (i) the null-field equations (28) and (29) and the Miiller system of surface integral equations
(Part 1), and (ii) provided that k; ¢ A(D;), between these null-field equations and the E-field surface integral equations (Part 2).
Part 1. Consider the Miiller system of surface integral equations (24) and (25) written in an equivalent form as

Je+e)e— (M, —eM)e— L (P, ~P)h=ce,, (105)
0
| .
5 (st pi)h = (M, — i Mije + kj— (Ps —Pi)e=p,hy. (106)
0
For e, h € T{“(S) satisfying the general null-field equations (28) and (29), we consider the electromagnetic fields
E=E;+V x A} + og VxVxA; (107)
0€s
H= — o VxE(r) H, +V x A - k V x V x A, (108)
oMy oMy
and
E = VxA'+k—V><V><A (109)
0€i
H,-:——VXE() VxA‘——VxVxA‘,. (110)
k() , k() ,

First, we prove the direct result. From the null-field equations, we have E = H = 0 in D; and E; = H; = 0 in D,. Passing to the boundary in the
equations E = H = 0 in D;, and using the jump relations (18) and (19) for vector potentials with densities e, h € Tg"'(S), we obtain

0—f xE —e()+Me—%e+kJPh (111)
0\

0=fixH —hy+Mh—-h—

2 Kot

while passing to the boundary in the equations E; = H; = 0 in D;, we obtain

0= nXE,,—Me+le+—73h (113)
2 k()l

0=f xHy, = M+ h- pe (114)
2 kop;

From Egs. (111) and (113), we find Eq. (105), while from Eqs. (112) and (114), we find Eq. (106).
To prove the converse results we assume thate, h € Tg‘” (S) satisfy the Miiller system of surface integral equations (105) and (106). Then, we argue as
follows.

1. Fore he Tg ““(S), the boundary values of e;n x E_ and ¢n x E;, are given, respectively, by

en xE_ = ¢ +eMe— %e e+ p P h, (115)
0
_ L
ef X E;, = eMe+ seie + kJ—P,-h, (116)
0

whence by means of Miiller's surface integral equation (105), we get

€,-ﬁ x E =€iﬁXE,‘|. (117)

Similarly, considering the boundary values y;n x H_ and y;n x H;;, and using Miiller's surface integral equation (106), we get

12
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U x Ho = pn x Hyy . (118)

2. We define the fields E' = ¢E and H' = yu,H satisfying the Maxwell equations

V x E = jkoe,H, V x H = —jkou,E' in D,

and the fields E; = ¢F; and H; = y;H; satisfying the Maxwell equations

V X E, = jkeeH,, V x H, = —jkouE; in D,
as well as the Silver-Miiller radiation condition

~ / ’ 1
r><\/&T,-H,-+\//T,E,:0(;). asr— oo.

Taking into account that the fields E', H' € C%%(D;) and E{, H; € C%¢(D;) fulfill the boundary conditions (cf. Egs. (117) and (118))

AixE =nxE =naxE, =nxE, (119)
and
nxH =nxH =nxH, =nxH, (120)

on S, we deduce that {E', H'} and {E;, H;} solve the homogeneous transmission boundary-value problem. Hence, they vanishes identically, and from E' =
0 in D; and E; = 0 in D;, implying E = 0 in D; and E; = 0 in D;, the conclusion readily follows.
Part 2. Consider the E-field system of surface integral Consider the E-field system of surface integral equations

| ‘

(71 - M.‘)e ~ I ph-e, (121)
2 ko€,

(lz + M;)e +-Ph=0. (122)
2 kog;

As before, for e, h € Tg‘"(S) satisfying the general null-field equations (28) and (29), we consider the electromagnetic fields {E, H} and {E;, H;} given
by Egs. (111)-(114), respectively. The proof of the direct result is obvious. From the null-field equations, we have E = 0 in D; and E; = 0 in D;. Passing to
the boundary in the equation E = 0 in D; we obtain Eq. (121), while passing to the boundary in the equation E; = 0 in D; we obtain Eq. (122). To prove

the converse result we assume thate, h € Tg"‘ (S) satisfy the E-field surface integral equations (121) and (122). Fore, h € Tg “(S), the boundary values of
n x E_ and n x E;; are given, respectively, by

AxE —et+ Me— et ph (123)
2 ko€
R 1
AxE, = Me+-e+-Ph, (124)
2 koé;

whence by means of the E-field surface integral equation (121) and (122), we obtain
nxE_ =0, (125)

AixE, =0. (126)

In view of Eq. (125), {E, H}, satisfying the Maxwell equations with the wavenumber k; in D;, and the boundary conditionn x E=n x E_ =0on$,
solve the homogeneous interior Maxwell problem. Hence, E = 0 in D;, provided that k; ¢ A(D;). Similarly, in view of Eq. (126), {E;, H;}, satisfying the
Maxwell equations with the wavenumber k; in D;, and the boundary condition i x E; = 0 x E;;, = 0 on S, solve the homogeneous exterior Maxwell
problem. Hence, E; = 0 in D;, and we conclude that if ks ¢ A(D;), the null-field equations are equivalent with the E-field surface integral equations.

Appendix 3

In this appendix we prove the estimates (36)-(39).
First, we prove the estimate (36) for the scattered field (the case t =s). Consider the free-space dyadic Green's functions of electric and magnetic type

13
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G and Gy, respectively, defined by

V x Gm = Emm
V % Guo = k2Geo + 8(r — 1)1

Application of the second vector-dyadic Green's theorem (P, Q € C?(D))
/[P-(VxVxG)—(VxVxP)-G]dV
D

—A[(ﬁxVxP)~6+(ﬁxP)-(VxQ)]dS

in D, (actually, in a domain bounded by the surface S and a spherical surface Sg with a large radius R) to P = E; and Q = G, and in D; to P = E, and
Q = Gy, yields

E,\.(r)z/g[e(r’) G (ks, ¥, 1) + jkop,h(r') - G (ky, ¥/, 1)] AS(X). (127)

The first integral in Eq. (127) denoted by E (r), that is,

E, (r) :/e(r’) G (ky, ¥/, ) dS(1')

s
can be estimated as follows. Let

3
Go(ks, ¥, 1) = Zai @ Gyi(ks, ', 1),

i=1
where G; are the vector components of the dyadic G and €; with i = 1,2, 3 are the Cartesian unit vectors, set a;(r') = e(r') - €;, and note that

3, |a(r) |2 = le(r') |2. Then, using the relation e-Gpo = 2 1€ [€; @ Gmoi] = 32 @G, the triangle inequality, and the Cauchy-Schwarz inequality

for vector-valued functions
n n 1/2
A ZLf,(r’)g,(r’)| ds(r)<3 (/s ZV}(F')F dS(rl))
R 1/2
([merase)

we obtain

.‘»l(r)|
/{ia(r )Gooi ks, 1, r)] dS(r’)‘

< sup / |Za,(r )Gk, ¥, 1) dS (')

= sup
reGs

<sup A ;‘a,‘(ﬂ)G,,,(,,-(kyr', )| as)

Afon( [ Soafetaf )| ([l as0)
[anl [ St s >) (e ds(,,))w

.. (128

= C,

with

14
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12
l|_3sup</Z|Gmm k', r) dS( )) .

reG

Similarly, for the second integral in Eq. (127) denoted by E,(r), we find

.‘2(r)| < Ca

Ih|], (129)

with (provided that ko and g, are real)

3 1/
C,, = 3kopt,sup (/ Z'G""' (ko' v) dS(r')>
reGs S =1

”

and Gey = Zleii ® Geoi- Combining Egs. (128) and (129), we obtain the estimate (36) with a constant C, = max(Ce1, Ce2) depending on S and G;. The
same technique can be used for proving the estimate (36) in the case t = i, and the estimate (37) in the cases t = s,i.
To prove the estimate (38), we express the electric far-field pattern as (cf. Eq. (34))

E.voc (F) = E.\'ool (F) + E,\'oo?. (F)v
where

E,. (T) :jﬁ /[? x e(r')]e k¥ ds(r’),
Eqon( r)f [/{rx[h ') x T]}e '“'JdS

Then, we find

B0 (F)] = |*/[,. « e(t)]e R as(r)|
N = / jk\/r\-r' J

§4K/S|[r x e(r')]e ds(r)

k\ / /
<4 [ rewrasw) (130)

< (1o asw) N

= el for an Feo

and similarly,

~ k  fuy
|E,\'002(r)|55 5_|

,g for all TeQ. (131)

Combining Egs. (130) and (131), we obtain the estimate (38) with
Cioo ::—’;[max(l. %‘)

The estimate (39) is proved in an analogous manner.

Appendix 4
In this appendix we recall some basic results from functional analysis [37,42].

1. A subset M of a normed space X is called complete if every Cauchy sequence of elements in M converges to an element in H. A normed space is called a
Banach space if it is complete. An inner (scalar) product space is called a Hilbert space if it is complete.

2. Two elements u and v of a Hilbert space H are called orthogonal if (u,v),, = 0; we then write u_Lv. If an element u is orthogonal to each element of a set
M, we call it orthogonal to M and write uL M. Similarly, if each element of a set M is orthogonal to each element of the set K, we call these sets

orthogonal, and write MLK. The Pythagorean theorem states that ||u + v \fl = ||ul |: + v |: for any orthogonal elements u and v.

15
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3. A subset M of a normed space is said to be closed if it contains all its limit points, i.e., if for every sequence u, € M with a limitu € H, we haveu € M,
then M is closed. For any set M in a normed space, the closure of M is the union of M with the set of all limit points of M. The closure of M is written M.
M is contained in M, and M = M if M is closed. Note the following properties of the closure:

(a) for any set M, M is closed;
(b) if McK, then McK;
(c) M is the smallest closed subset containing M; that is, if MCK and K is closed, then McK.

4. Let H be a Hilbert space and M a subspace of H (i.e., a complete vector subspace of H). The vector w € M, defined as ||u — w||; = infyem||u — V|| is
the best approximation of u among all the vectors of M. The operator P : H - M mapping u onto its best approximation, i.e., Pu = w, is a bounded
linear operator with the properties P> = P and (Pu, V), = (u, Pv), for any u,v € H. P is called the orthogonal projection operator from H to M, and w is
called the projection of u to M. The set of all elements orthogonal to M is called the orthogonal complement of M, M+ = {u€ H|uLM}. For u € H, the
projection w = Pu satisfies u — w1 M, and any element u € H can be uniquely decomposed as u = w + w*, where w € M and w* € M*. This result is
known as the theorem of orthogonal projection.

5. Let X be anormed space and M a subset of X. M is dense in X if and only if for any u € X there exists a sequence uy € M such that ||u— uy||y - 0asN —
. Every set is dense in its closure, i.e., M is dense in M. M is the largest set in which M is dense; that is, if M is dense in K, then Kc M. If M is dense in a
Hilbert space H, then M = H. Conversely, if M = H, then M is dense in H. Let H be a Hilbert space. If M is dense in H and u is orthogonal to M, then
u = Oy, where 0y is the zero element of H.

6. The elements y;, s, ..., yy of a vector space X are called linearly independent if the equation 3"} , ajy; = O can only be satisfied by @; = 0 fori = 1,...,
N. If any finite number of elements of an infinite set {y;};°; is linearly independent, the set {y;};°; is called linearly independent.

7. Asystem of elements {y;}:°; is minimal in a Hilbert space H if none of the elements belongs to the closure of the linear span of the others, i.e., for each
i,y & spﬁ{y/j[j #1}. A system {y; }]f'il is called biorthogonal to the system {y;}°; if (y;, )y = &j, where &j is the Kronecker symbol. The bio-
rthogonal system {y; }]f'zl is uniquely defined if and only if the system {y;};°, is minimal. Essentially, the “minimality’’ is a type of strengthening of
the property of linear independence.

8. A system of elements {y;}{°; is closed in a Hilbert space H if there are no elements in H orthogonal to any element of the set except the zero element
Oy, that is, for u € H, the conditions

(u,w;), =0, i=1,2,..., imply u=0y.

9. A system of elements {y;};*; is complete in a Hilbert space H if for any u € H and any ¢ > 0, there exists an integer N = N(¢) and a set {a }fil such
that |ju— SN ay;||,; < e If the system {y;}°; is complete in H, then the sequence of subsets

aieC}

is limit dense in H, that is, for any u € H, the distance from u to My goes to zero as N — o, i.e., |[u — Pyul|; — 0 as N — co, where Py is the orthogonal
projection operator from H to My.

i=1

N
My =span{y,,y,, ...y} = {u: Za,-q/,.

10. A system of elements {y;};°, is complete in a Hilbert space H if and only if it is closed in H.

11. A system {y;};°, forms a Schauder basis of a Banach space X if any element u € X can be uniquely represented asu = > _;°; a;yy;, where the series
converges in the norm of X. If {y;}{, is a basis of a Hilbert space H, then the biorthogonal system {y; }jf’fl is also a basis of H, and each element u €

H can be represented as u = >_°; (u, ;) ¥;- A basis {y;}{°, of H is a complete minimal system of H, but a system {y;}:°, can be complete but not
form a basis of H. Thus, the basis property is far stronger than the completeness property.

12. A complete system {y;}°, forms Riesz basis of a Hilbert space H if and only if the Gramm matrix G = [Gy] with G = (y;, y;)y generates an
isomorphism on 2. Actually, a complete system {y;}°, forms a Riesz basis of H if and only if

(a) the inequalities

N N N
a Y |al <|[Y awll, <y |al’ (132)
i=1 i=1 i=1

hold for any constants a; and for any N, where the positive constants c¢; and ¢, do not depend on N and q;, or
(b) there exist positive constants ¢; and ¢, such that

Ci gl(tlﬂl//i)H

< fu

chz Z|<Ll.l[/i),_,|2 (133)
p=

for all u € H. Note that if {y;};°, is a Riesz basis then

suplly |l < 2 and infllyll, > 1 (134)
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13. A map A of a vector space X onto a vector space Y is called a linear map if A transforms linear combinations of elements into the same linear
combinations of their images. Linear maps are also called linear operators, and in linear algebra, one usually writes arguments without brackets,
i.e., A(u) = Au. Linearity of an operator is a very strong condition which is shown by the following equivalent statements:

(a) A transforms sequences converging to zero into bounded sequences;

(b) A is bounded, i.e., || Aul|y < c||ul|y for all u € X and ¢ independent of u;

(c) A is continuous.

Appendix 5

In this appendix we give the explicit expressions for the commonly used systems of discrete sources.
The localized vector spherical wave functions are defined by

M3 (kr) = ¢,z (kr) [jma™ (0)8 — 27 (0) ], (135)

mn

N (kr) —c,,{n(n e ‘k(k )pinl(cos0)F + 4["”"';("’)]

mn

[rl:"‘(ey?+jmnl:"'<e>r7:]}ei"'v: (136)

where ¢, = 1//2an(n+ 1), (r,0, ¢) are the spherical coordinates of, (T, §, $) are the unit vectors in spherical coordinates, 2z} designates the spherical
Bessel functions jy, 23 stands for the spherical Hankel functions of the first kind hn,

a1 )] = g 1 4] as7)

[krzrll'3(kr)]/: [km (kr)]— [ (kr)] (138)

d
d(kr)

p (cos 0) are the associated Legendre functions, and the angular functions 2™ and 7" are related to the associated Legendre functions prl (cos 0) by the
relations

Pl (cos 0)
|m| 0) =" 139
n0) == (139)
d
[m\ (9) P\m\ (COS()) (140)
Equivalent representations are
M, (kr) =2, (kr)m,,, (6, ). (141)
13 (k krz'3 (kr !
NU(ke) = Va7 1) 20 0,0) + Mn,,,,,(a, ), (142)
mn k'. kr
where
1 ~
lnm((}w (/)) = \/T—”Pl:"‘ (Cosg)elmer (143)
1,,(0,9) = ¢, [27(0)8 + jmal" () e, (144)
m,.,(0, ¢) =c, [jma" (0)0 — 1" (0)] &, (145)
are the normalized spherical harmonic vectors.
The expressions of the spherical vector wave functions with an origin shifted at z, along the z-axis are given by
M3 (k(r — 20Z)) = ¢,z (kRo) {jma!™ (6,) [sin(0 — 6))F (146)

+cos(0 — ()(,)0] —2(0y) @}

and

Z,X (k 0)

N3 (k(r — 202)) = ¢, {n(n +1) P (costy)
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N ~ [kReZ) (kRy)]'
X [cos(0 — 0y)T — sin(0 — 0,)0] + w
0

x {7 (00)[sin(0 — 00)F + cos(0 — 00)8] + jmz!" (60)@ } " (147)

where 7 is the unit vector along the z-axis,

Ry=\/p* + (z— ), sin6, =2 cosy=""2, (148)
R() Rl)

and (r, 0, ¢) and (p, ¢, 2) are the spherical and the cylindrical coordinates of r, respectively. The localized vector spherical wave functions correspond to
2o = 0 in Egs. (146) and (147), in which case, Ry =r and 6, = 0.
The distributed vector Mie potentials are computed as

M, (kr) :%Vg(k, r,,r)Xr

R (149)
=my(r,r,)0 +m,(r.r,)Q,
1
N, (kr) ==V x M, (r
) =T M) 150
= n,(r,1,)T +np(r,r,)0 + n,(r,r,)@,
where
Lrr, , P
mo(r 1) =2 ¢ (R (R, ), as1)
my(r.1) = —+ g (R, (. F,). (152)
k Rn
and
n(rr)——i i "(R)—l’z' (R | [fF (7, %) + £ (F,T,)]
r s &n - k2 R;)—'g n R?, g n 1 1 & n 2 bl n
+2%g'(R,,)cos®,.}, (153)
1 [2r,R2 — ritfs(T,T0)
ny(r,xr,) = 2 [R—lg (R.)
2 f3(F,T) o
HECT k) (7 7., (154
1 [2r,R? — rrzf;(F. T,)
(r,1,) = — | —"————¢'(R,
mie.n) = |2 O e,
2 fi(T,F,) ), o~
R R |15 7). (155)
In Egs. (151)-(155), r =T, rp = Inty, (r,0,¢) and (1, 6n, @,) are the spherical coordinates of r and r,, respectively,
cos ®, =TT, = cos 0 cos 0, + sin 0 sin 6, cos(p — ¢,), (156)
A(E.F) =sin 0, sin(p — g,). (157)
f>(F,T,) =sin 0 cos 6, — cos 0 sin 0, cos(¢ — ¢,), (158)
F(F.F) =— — cosO,, (159)

I'n

and

R,=|r—r,| = \/r* +r2 = 2rr, cos®,, (160)
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QikRs

R))=——.
g(Ry) IR,

The distributed magnetic and electric dipoles are given by
1 ~
an(kr) = k_ZVg(k' r,, r) X 1"np

= kl_z(r_ l',,) X ’T\n]xfl (Rn)y

1
an(kr) = Ev X an(r)

= % {(l’ - l‘,,) X [(l‘ - l‘,,) X ?np] fZ(Rn) - 2%1/1[1 (Rn)}

where

i(R) = G, — 1) ER)

n

g(R,)
R

n

jZ(Rn) = (3 - 3_|kR,, - szi)

and as before, R, = |r —r,| and g(R,) = exp(jkR,)/(4zRy).

Appendix 6
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(161)

(162)

(163)

(164)

(165)

In this appendix we give a counterexample showing that the tangential systems of regular and radiating vector spherical wave functions do not form

bases.
For the dyadic g(k,r,r')I, we have the expansion

elhr )= kz M (kr') @ ML (kr) + N2 (kr') @ N} (kr) + L2 (k') @ L. (kr), r <+
=) M. (kr') @ M2 (kr) + NL(kr') @ N3 (kr) + LL(kt') @ L2 (kr), r > ¢

whence from the identities ag = a-gl and V x (fa) = fV x a— a x Vf, we obtain

x [a(r)g(k,r, )] =jk* Z

a=1

[a(r') - M2 (kr') N} (kr) + [a(r) - N2 (kr')|M (kr) r < ¥
[a(r') - ML(kr'") N2 (kr) + [a(r') - NL(kr')|M (), r >+

a

Srmmm="

Fig. 3. The spherical surface Sk dividing S into two parts S; and S».

(166)

(167)

(168)

Consider a spherical surface Sg dividing S into exactly two parts: the first one S; is in the exterior of Sg, and the second one S- is in the interior of Sg

(Fig. 3). Define the electromagnetic fields
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E(r) =V x [a(r')g(k,r,r)],

H(r)= — ﬁv x E(r),

Physics Open 5 (2020) 100020

(169)

(170)

where r’ is a fixed point on Sg. Using the expansions (167) and (168), we find that for r € Sz, we have (r < r')

n(r) x M. (kr)
e(r) ®

r) x Nl (kr)

with

co=jk*[a(r)-Ni(kr)], d,=jk*[a(r) M2 (kr')],

while for r € $;, we have (r > r’)

n(r) x M2 (kr)

e(r) zoo:
-y
h(l‘) a=1 . EA 3
J\/;n(l‘) X N3 (kr)
n(r) x N3 (kr)
+8a
- \/Eﬁm X M3 (kr)
with

fo=ik*[a(r')-NL(kr))], g.=jk*[a(r) ML(kr')].

171)

172)

(173)

(174)

If the expansion (171) is also valid on Sy, i.e., if the tangential system of regular vector spherical wave functions is a basis, we contradict the spherical
wave expansion of the Green function. The same conclusion can be drawn for the tangential system of radiating vector spherical wave functions.

References

(1]
[2]
[3]
[4]

[5]
[6]
(71

[8

—

[9]
[10]
[11]

[12]

P.C. Waterman, Matrix formulation of electromagnetic scattering, Proc. IEEE 53
(1965) 805-812.

R.H.T. Bates, Modal expansions for electromagnetic scattering from perfectly
conducting cylinders of arbitrary cross-section, Proc. IEEE 115 (1968) 1443-1445.
P.C. Waterman, New formulation of acoustic scattering, J. Acoust. Soc. Am. 45
(1969) 1417-1429.

R.H.T. Bates, D.J.N. Wall, Null field approach to scalar diffraction: I. General
method; II. Approximate methods; I1I. Inverse methods, Phil. Trans. Roy. Soc. Lond.
287 (1977) 45-117.

P.A. Martin, On the null-field equations for the exterior problems of acoustics, Q. J.
Mech. Appl. Math. 33 (1980) 385-396.

P.A. Martin, Acoustic scattering and radiation problems, and the null-field method,
Wave Motion 4 (1982) 391-408.

P.C. Waterman, Matrix theory of elastic wave scattering, J. Acoust. Soc. Am. 60
(1976) 567-580.

V. Varatharajulu, Y.H. Pao, Scattering matrix for elastic waves. I. Theory, J. Acoust.
Soc. Am. 60 (1976) 556-566.

P.A. Martin, On the null-field equations for water-wave radiation problems, J. Fluid
Mech. 113 (1981) 315-332.

P.A. Martin, On the null-field equations for water-wave scattering problems, IMA J.
Appl. Math. 33 (1984) 55-69.

V.K. Varadan, V.V. Varadan (Eds.), Acoustic, Electromagnetic and Elastic Wave
Scattering: Focus on the T-Matrix Approach, Pergamon Press, New York, 1980.
V.V. Varadan, A. Lakhtakia, V.K. Varadan, Comments on recent criticism of the T-
matrix method, J. Acoust. Soc. Am. 84 (1988) 2280-2284.

20

[13]

[14]
[15]
[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

M.I. Mishchenko, L.D. Travis, D.W. Mackowski, T-matrix computations of light
scattering by nonspherical particles: a review, J. Quant. Spectrosc. Radiat. Transfer
55 (1996) 535-575.

M.IL. Mishchenko, J.W. Hovenier, L.D. Travis (Eds.), Light Scattering by
Nonspherical Particles, Academic Press, San Diego, 2000.

M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption and Emission of
Light by Small Particles, Cambridge University Press, Cambridge, 2002.

B. Peterson, S. Strom, Matrix formulation of acoustic scattering from an arbitrary
number of scatterers, J. Acoust. Soc. Am. 56 (1974) 771-780.

M.F. Iskander, A. Lakhtakia, C.H. Durney, A new procedure for improving the
solution stability and extending the frequency range of the EBCM, IEEE Trans.
Antenn. Propag. 31 (1983) 317-324.

A. Lakhtakia, V.K. Varadan, V.V. Varadan, Iterative extended boundary condition
method for scattering by objects of high aspect ratios, J. Opt. Soc. Am. A 76 (1984)
906-912.

R.H. Hackman, The transition matrix for acoustic and elastic wave scattering in
prolate spheroidal coordinates, J. Acoust. Soc. Am. 75 (1984) 35-45.

A. Doicu, Y. Eremin, T. Wriedt, Acoustic and Electromagnetic Scattering Analysis
Using Discrete Sources, Academic Press, London, 2000.

M.I Mishchenko, M.A. Yurkin, Impressed sources and fields in the volume-integral-
equation formulation of electromagnetic scattering by a finite object: a tutorial,

J. Quant. Spectrosc. Radiat. Transfer 214 (2018) 158-167.

C. Miiller, Foundations of the Mathematical Theory of Electromagnetic Waves,
Springer, Berlin, 1969.

D. Colton, R. Kress, Integral Equation Methods in Scattering Theory, Wiley, New
York, 1983.



A. Doicu, M.I. Mishchenko

[24]

[25]

[26]
[27]

[28]

[29]

[30]
[31]

[32]

D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,
Springer, Berlin, 1992,

P.A. Martin, P. Ola, Boundary integral equations for the scattering of
electromagnetic waves by a homogeneous dielectric obstacle, Proc. R. Soc. Edinb.
123 (1993) 185-208.

R.F. Harrington, Boundary integral formulations for homogeneous material bodies,
J. Electromagn. Waves Appl. 3 (1989) 1-15.

D.S. Jones, Methods in Electromagnetic Wave Propagation, Clarendon Press,
Oxford, 1979.

J.R. Mautz, R.F. Harrington, Electromagnetic scattering from a homogeneous
material body of revolution, Archiv fiir Elekronik Ubertragungstechnik (AEU) 33
(1979) 71-80.

E. Arvas, J.R. Mautz, On the non-uniqueness of the surface EFIE applied to multiple
conducting and/or dielectric bodies, Archiv fiir Elekronik Ubertragungstechnik
(AEU) 42 (1988) 364-369.

Y.A. Eremin, A.G. Sveshnikov, The Discrete Sources Method in Electromagnetic
Diffraction Problems, Moscow State University Press, Moscow, 1992.

C. Hafner, The Generalized Multipole Technique for Computational
Electromagnetics, Artech House, Boston, 1990.

Y.A. Eremin, Representation of fields in terms of sources in the complex plane in the
method of non-orthogonal series, Sov. Phys. Dokl. 28 (1983) 451-452.

21

[33]

[34]

[35]

[36]
[37]
[38]

[39]
[40]

[41]

[42]

Physics Open 5 (2020) 100020

A.G. Dallas, Basis Properties of Traces and Normal Derivatives of Spherical-
Separable Solutions of the Helmholtz Equation. Technical Report No. 2000-6,
Department of Mathematical Sciences, University of Delaware, 2000.

A.G. Dallas, On the Convergence and Numerical Stability of the Second Waterman
Scheme for Approximation of the Acoustic Field Scattered by a Hard Obstacle.
Technical Report No. 2000-7, Department of Mathematical Sciences, University of
Delaware, 2000.

E. Hellinger, Toeplitz, Integralgleichungen und Glechungen mit unendlichvielen
Unbekannten, Encyklopadie der Mathematischen Wissenschaft 13 (1928)
1335-1616.

L.V. Kantorovich, V.I. Krylov, Approximate Methods of Higher Analysis, Noordhoff,
Groningen, 1958.

G. Kristensson, A.G. Ramm, S. Strém, Convergence of the T-matrix approach in
scattering theory, II, J. Math. Phys. 24 (1983) 2619-2631.

P.C. Waterman, Symmetry, unitarity and geometry in electromagnetic scattering,
Phys. Rev. D 3 (1971) 825-839.

P.C. Waterman, The T-matrix revisited, J. Opt. Soc. Am. A (2007) 2257-2267.
P.A. Martin, On connections between boundary integral equations and T-matrix
methods, Eng. Anal. Bound. Elem. 27 (2003) 771-777.

M. Ganesh, S.C. Hawkins, Three dimensional electromagnetic scattering T-matrix
computations, J. Comput. Appl. Math. 234 (2010) 1702-1709.

A.G. Ramm, Scattering by Obstacles, Reidel, Dordrecht, 1986.






