11,625 research outputs found
Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model
The impact of convection on tropospheric O<sub>3</sub> and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O<sub>3</sub>. First, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> itself. Convection lifts lower tropospheric air to regions where the O<sub>3</sub> lifetime is longer, whilst mass-balance subsidence mixes O<sub>3</sub>-rich upper tropospheric (UT) air downwards to regions where the O<sub>3</sub> lifetime is shorter. This tends to decrease UT O<sub>3</sub> and the overall tropospheric column of O<sub>3</sub>. Secondly, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> precursors. This affects O<sub>3</sub> chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NO<sub>x</sub> to produce PAN, at the expense of NO<sub>x</sub>. In our model, we find that convection reduces UT NO<sub>x</sub> through this mechanism; convective down-mixing also flattens our imposed profile of lightning emissions, further reducing UT NO<sub>x</sub>. Over tropical land, which has large lightning NO<sub>x</sub> emissions in the UT, we find convective lofting of NO<sub>x</sub> from surface sources appears relatively unimportant. Despite UT NO<sub>x</sub> decreases, UT O<sub>3</sub> production increases as a result of UT HO<sub>x</sub> increases driven by isoprene oxidation chemistry. However, UT O<sub>3</sub> tends to decrease, as the effect of convective overturning of O<sub>3</sub> itself dominates over changes in O<sub>3</sub> chemistry. Convective transport also reduces UT O<sub>3</sub> in the mid-latitudes resulting in a 13% decrease in the global tropospheric O<sub>3</sub> burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in convection schemes as well as chemistry schemes – in particular isoprene-driven changes are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range
NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation
The physiological role of the non-homologous end-joining (NHEJ) pathway in the repair of DNA double-strand breaks (DSBs) was examined in Mycobacterium smegmatis using DNA repair mutants (DeltarecA, Deltaku, DeltaligD, Deltaku/ligD, DeltarecA/ku/ligD). Wild-type and mutant strains were exposed to a range of doses of ionizing radiation at specific points in their life-cycle. NHEJ-mutant strains (Deltaku, DeltaligD, Deltaku/ligD) were significantly more sensitive to ionizing radiation (IR) during stationary phase than wild-type M. smegmatis. However, there was little difference in IR sensitivity between NHEJ-mutant and wild-type strains in logarithmic phase. Similarly, NHEJ-mutant strains were more sensitive to prolonged desiccation than wild-type M. smegmatis. A DeltarecA mutant strain was more sensitive to desiccation and IR during both stationary and especially in logarithmic phase, compared to wild-type strain, but it was significantly less sensitive to IR than the DeltarecA/ku/ligD triple mutant during stationary phase. These data suggest that NHEJ and homologous recombination are the preferred DSB repair pathways employed by M. smegmatis during stationary and logarithmic phases, respectively
Partial mixing and the formation of 13C pockets in AGB stars: effects on the s-process elements
The production of the elements heavier than iron via slow neutron captures
(the s process) is a main feature of the contribution of asymptotic giant
branch (AGB) stars of low mass (< 5 Msun) to the chemistry of the cosmos.
However, our understanding of the main neutron source, the 13C(alpha,n)16O
reaction, is still incomplete. It is commonly assumed that in AGB stars mixing
beyond convective borders drives the formation of 13C pockets. However, there
is no agreement on the nature of such mixing and free parameters are present.
By means of a parametric model we investigate the impact of different mixing
functions on the final s-process abundances in low-mass AGB models. Typically,
changing the shape of the mixing function or the mass extent of the region
affected by the mixing produce the same results. Variations in the relative
abundance distribution of the three s-process peaks (Sr, Ba, and Pb) are
generally within +/-0.2 dex, similar to the observational error bars. We
conclude that other stellar uncertainties - the effect of rotation and of
overshoot into the C-O core - play a more important role than the details of
the mixing function. The exception is at low metallicity, where the Pb
abundance is significantly affected. In relation to the composition observed in
stardust SiC grains from AGB stars, the models are relatively close to the data
only when assuming the most extreme variation in the mixing profile.Comment: 17 pages, 8 figures, 6 tables, accepted for publications on Monthly
Notices of the Royal Astronomical Societ
Low Gain Avalanche Detectors (LGAD) for particle physics and synchrotron applications
A new avalanche silicon detector concept is introduced with a low gain in the region of ten, known as a Low Gain Avalanche Detector, LGAD. The detector's characteristics are simulated via a full process simulation to obtain the required doping profiles which demonstrate the desired operational characteristics of high breakdown voltage (500 V) and a gain of 10 at 200 V reverse bias for X-ray detection. The first low gain avalanche detectors fabricated by Micron Semiconductor Ltd are presented. The doping profiles of the multiplication junctions were measured with SIMS and reproduced by simulating the full fabrication process which enabled further development of the manufacturing process. The detectors are 300 μm thick p-type silicon with a resistivity of 8.5 kΩcm, which fully depletes at 116 V. The current characteristics are presented and demonstrate breakdown voltages in excess of 500 V and a current density of 40 to 100 nAcm−2 before breakdown measured at 20oC. The gain of the LGAD has been measured with a red laser (660 nm) and shown to be between 9 and 12 for an external bias voltage range from 150 V to 300 V
Cognitive demands of face monitoring: Evidence for visuospatial overload
Young children perform difficult communication tasks better face to face than when they cannot see one another (e.g., Doherty-Sneddon & Kent, 1996). However, in recent studies, it was found that children aged 6 and 10 years, describing abstract shapes, showed evidence of face-to-face interference rather than facilitation. For some communication tasks, access to visual signals (such as facial expression and eye gaze) may hinder rather than help children’s communication. In new research we have pursued this interference effect. Five studies are described with adults and 10- and 6-year-old participants. It was found that looking at a face interfered with children’s abilities to listen to descriptions of abstract shapes. Children also performed visuospatial memory tasks worse when they looked at someone’s face prior to responding than when they looked at a visuospatial pattern or at the floor. It was concluded that performance on certain tasks was hindered by monitoring another person’s face. It is suggested that processing of visual communication signals shares certain processing resources with the processing of other visuospatial information
Bounds on Quantum Correlations in Bell Inequality Experiments
Bell inequality violation is one of the most widely known manifestations of
entanglement in quantum mechanics; indicating that experiments on physically
separated quantum mechanical systems cannot be given a local realistic
description. However, despite the importance of Bell inequalities, it is not
known in general how to determine whether a given entangled state will violate
a Bell inequality. This is because one can choose to make many different
measurements on a quantum system to test any given Bell inequality and the
optimization over measurements is a high-dimensional variational problem. In
order to better understand this problem we present algorithms that provide, for
a given quantum state, both a lower bound and an upper bound on the maximal
expectation value of a Bell operator. Both bounds apply techniques from convex
optimization and the methodology for creating upper bounds allows them to be
systematically improved. In many cases these bounds determine measurements that
would demonstrate violation of the Bell inequality or provide a bound that
rules out the possibility of a violation. Examples are given to illustrate how
these algorithms can be used to conclude definitively if some quantum states
violate a given Bell inequality.Comment: 13 pages, 1 table, 2 figures. Updated version as published in PR
Better Bell Inequality Violation by Collective Measurements
The standard Bell inequality experiments test for violation of local realism
by repeatedly making local measurements on individual copies of an entangled
quantum state. Here we investigate the possibility of increasing the violation
of a Bell inequality by making collective measurements. We show that
nonlocality of bipartite pure entangled states, quantified by their maximal
violation of the Bell-Clauser-Horne inequality, can always be enhanced by
collective measurements, even without communication between the parties. For
mixed states we also show that collective measurements can increase the
violation of Bell inequalities, although numerical evidence suggests that the
phenomenon is not common as it is for pure states.Comment: 7 pages, 4 figures and 1 table; references update
Quantum control on entangled bipartite qubits
Ising interaction between qubits could produce distortion in entangled pairs
generated for engineering purposes (as in quantum computation) in presence of
parasite magnetic fields, destroying or altering the expected behavior of
process in which is projected to be used. Quantum control could be used to
correct that situation in several ways. Sometimes the user should be make some
measurement upon the system to decide which is the best control scheme; other
posibility is try to reconstruct the system using similar procedures without
perturbate it. In the complete pictures both schemes are present. We will work
first with pure systems studying advantages of different procedures. After, we
will extend these operations when time of distortion is uncertain, generating a
mixed state, which needs to be corrected by suposing the most probably time of
distortion.Comment: 10 pages, 5 figure
The Pan-STARRS1 Photometric System
The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of
the sky north of declination -30 deg to unprecedented depths. These data are
being photometrically and astrometrically calibrated and will serve as a
reference for many other purposes. In this paper we present our determination
of the Pan-STARRS photometric system: gp1, rp1, ip1, zp1, yp1, and wp1. The
Pan-STARRS photometric system is fundamentally based on the HST Calspec
spectrophotometric observations, which in turn are fundamentally based on
models of white dwarf atmospheres. We define the Pan-STARRS magnitude system,
and describe in detail our measurement of the system passbands, including both
the instrumental sensitivity and atmospheric transmission functions.
Byproducts, including transformations to other photometric systems, galactic
extinction, and stellar locus are also provided. We close with a discussion of
remaining systematic errors.Comment: 39 pages, 9 figures, machine readable table of bandpasses, accepted
for publication in Ap
- …
