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Better Bell-inequality violation by collective measurements
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The standard Bell-inequality experiments test for violation of local realism by repeatedly making local
measurements on individual copies of an entangled quantum state. Here we investigate the possibility of
increasing the violation of a Bell inequality by making collective measurements. We show that the nonlocality
of bipartite pure entangled states, quantified by their maximal violation of the Bell-Clauser-Horne inequality,
can always be enhanced by collective measurements, even without communication between the parties. For
mixed states we also show that collective measurements can increase the violation of Bell inequalities, al-
though numerical evidence suggests that the phenomenon is not common as it is for pure states.
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I. INTRODUCTION

It is one of the most remarkable features of quantum
physics that measurements on separated systems cannot al-
ways be described by local realistic theories �1–6�. Typically,
this phenomenon is revealed by the violation of a Bell in-
equality, which are constraints that have to be satisfied by
any local realistic description. Bell-inequality violations have
been observed experimentally in various physical systems,
such as entangled photon pairs, as reviewed in Ref. �7� and
entangled 9Be+ ions �8�. For a background on Bell inequali-
ties readers are referred to Ref. �9�, and references therein.

Usually, experiments to test Bell inequalities involve
making many measurements on individual copies of the
quantum system with the system being prepared in the same
way for each measurement. In this paper, we consider a
somewhat different scenario and ask if quantum nonlocality
can be enhanced by making joint local measurements on
multiple copies of the entangled state. We will use the maxi-
mal Bell-inequality violation of a quantum state � as our
measure of nonlocality. Our interest is to determine if ��N,
when compared with �, can give rise to a higher Bell-
inequality violation for some N�1.

A very similar problem was introduced by Peres �10� who
considered Bell-inequality violations under collective mea-
surements but allowed the experimenters to make an auxil-
iary measurement on their systems and postselect on both
getting a specific outcome of their measurement. Numeri-
cally, Peres showed that with collective measurements and
postselection �11�, a large class of two-qubit states give rise
to better Bell-inequality violation. Moreover, explicit ex-
amples were given to illustrate that collective measurements
with postselection can be used to detect the nonlocality of a
larger set of entangled states.

That postselection can be used to reveal such “hidden
nonlocality,” was already shown in 1994 by Popescu �12�
using sequential measurements. After that, Gisin �13� also
demonstrated that �without collective measurements� postse-
lection itself in the form of local filtering operations can be
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used to detect a larger set of two-qubit entangled states. It is
worth noting that an experimental demonstration of hidden
nonlocality has been reported in Ref. �14�.

In this paper, we will show that postselection is not nec-
essarily to improve Bell-inequality violation. In order to find
such examples for mixed states we have resorted to various
numerical approaches that are described in Ref. �15� and
provide upper and lower bounds on the optimal violation of
a given Bell inequality by a given quantum state. The two
algorithms described in Ref. �15� make use of convex opti-
mization techniques, specifically semidefinite programs
�16,17�. The first, henceforth referred as the LB algorithm, is
an algorithm that can be used to determine, for a given quan-
tum state �, a lower bound of its maximal violation of a
given Bell inequality. This can be seen as an extension of the
See-Saw iteration developed by Werner and Wolf �9� to Bell
inequalities with more than two outcomes. As with many
other numerical optimization techniques, the LB algorithm
converges to a local maximum of the global optimization
problem, and hence, feeding the algorithm with various ran-
dom initial guesses is essential. Unless otherwise stated,
Bell-inequality violations presented hereafter refer to the best
violation that we could find either analytically, or numeri-
cally using this LB algorithm.

Complementarily, the other algorithm, which we shall re-
fer as the UB algorithm, is one that can be used to determine
an upper bound on the maximal violation of � for a given
Bell inequality. The technique involves relaxing the compli-
cated optimization over measurements in the Bell experiment
to a sequence of semidefinite programs using techniques that
have been developed in the general context of nonlinear op-
timization theory �18,19� and applied in quantum informa-
tion theory in other contexts �20,21�. These methods provide
global upper bounds on the Bell-inequality violation that can
be accurately and efficiently computed. The upper bounds
obtained via this algorithm are often not tight, but are some-
times nontrivial �15�. For ease of reference, these upper
bounds are marked where they appear with †. In the event
that a violation presented is known to be maximal �such as
those computable using the Horodecki’s criterion �22��, an *
will be attached.

This paper is organized as follows. In Sec. II, we present
a measurement scheme which we will use to determine the

Bell-Clauser-Horne inequality violation for any bipartite
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pure state. These measurements led to the largest violation
that we were able to find and may even be maximal. Then, in
Sec. III, we show that for bipartite pure entangled states,
collective measurements can lead to a greater violation of the
Bell-CH inequality. The corresponding scenario for mixed
entangled states is analyzed in Sec. IV. We then conclude
with a summary of results and some future avenues of re-
search.

II. BELL-CH VIOLATION FOR PURE TWO QUDITS

In this section, we present a measurement scheme which
gives rise to the largest Bell-Clauser-Horne �henceforth ab-
breviated as Bell-CH� inequality �3� violation that we have
found for arbitrary pure two-qudit states, i.e., quantum states
describing a composite of two d-dimensional quantum sub-
systems. We find using this inequality for probabilities rather
than correlations to be convenient for our purposes and the
equivalence between the Bell-CH inequality and the Bell-
Clauser-Horne-Shimony-Holt �henceforth abbreviated as
Bell-CHSH� inequality �2� in the ideal limit, implies that if
the conjectured measurement scheme is optimal for the
Bell-CH inequality, it will also give rise to the maximal Bell-
CHSH inequality violation for any pure two-qudit state.

The Bell-CH inequality is meant for an experimental
setup involving two observers, Alice �A� and Bob �B�. Each
of these observers can perform two alternative measure-
ments, and each measurement gives rise to two possible out-
comes which we shall label by ±. The Bell-CH inequality is
as follows �3�:

Slhv = pAB
+−�1,1� + pAB

+−�1,2� + pAB
+−�2,1� − pAB

+−�2,2� − pA
+�1�

− pB
−�1� � 0, �1�

where pAB
+−�k , l� refers to the joint probability that experimen-

tal outcome + and − are observed at the site of A and B,
respectively, given that Alice performs the kth and Bob per-
forms the lth measurement; the marginal probabilities pA

+�k�
and pB

−�l� are similarly defined. In quantum mechanics, these
probabilities are calculated according to

pAB
+−�k,l� = tr��Ak

+
� Bl

−� ,

pA
+�k� = tr��Ak

+
� 1B�, pB

−�l� = tr��1A � Bl
−� , �2�

where we have denoted by A+
k the positive-operator-valued

measure �POVM� element associated with the “+” outcome
of Alice’s kth measurement and B−

l the POVM element asso-
ciated with the “−” outcome of Bob’s lth measurement.

The maximal Bell-inequality violation for a quantum state
is invariant under a local unitary transformation. As such, the
maximal Bell-inequality violation for any bipartite pure
quantum state is identical to its maximal violation when writ-
ten in the Schmidt basis �23,24�. In this basis, an arbitrary
bipartite pure state in d dimension, ��d� takes the form
��d�=�i=1

d ci ��i�A ��i�B, where ���i�A	 and ���i�B	 are local or-
thonormal bases of subsystem possessed by observer A and
B, respectively, and �ci	i=1

d are the Schmidt coefficients of
�� �. Without loss of generality, we may also assume that
d
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c1�c2� ¯ �cd�0. Then ���d is entangled if and only if
d�1. Now, let us consider the following measurement set-
tings for Alice, which were first adopted in Ref. �5�:

A1
± = 1

2 �1d ± Z�, A2
± = 1

2 �1d ± X� ,

Z 
 � i=1
�d/2��z + �, X 
 � i=1

�d/2��x + � ,

���ij = 0 " i, j � d, ���dd = d mod 2, �3�

where �x and �z are, respectively, the Pauli x and z matrices.
Note, however, that the �Bl

±	l=1
2 given in Ref. �5� is not

optimal. In fact, given the measurements for Alice in Eq. �3�,
the optimization of Bob’s measurement settings can be car-
ried out explicitly �25�. Using the resulting analytic expres-
sion for Bob’s optimal POVM �15�, the optimal expectation
value of the Bell-CH operator �27� for ��d� can be computed
and we find

�BCH���d� =
1

2 �
n=1

�d/2�
��c2n−1

2 + c2n
2 �2 + 4c2n

2 c2n−1
2 +

	

2
cd

2 −
1

2
,

�4�

where 	
d mod 2 �28�.
Effectively, this measurement scheme corresponds to first

ordering each party’s local basis vectors ���i�	i=1
d according

to their Schmidt coefficients, and grouping them pairwise in
descending order from the Schmidt vector with the largest
Schmidt coefficient. Physically, this can be achieved by Alice
and Bob each performing an appropriate local unitary trans-
formation. Each of their Hilbert space can then be repre-
sented as a direct sum of two-dimensional subspaces, which
can be regarded as a one-qubit space, plus a one-dimensional
subspace if d is odd. The final step of the measurement con-
sists of performing the optimal measurement �22� in each of
these two-qubit spaces as if the other spaces did not exist.

From here, it is easy to see that if we have a maximally
entangled state, i.e., ��d�ME=1/�d�i=1

d ��i�A ��i�B, then �4�
gives

�BCH���d�ME
= 


1
�2

−
1

2
*:d even

�2�d − 1� + 1

2d
−

1

2
:d odd

. �5�

Under this measurement scheme, the Bell-CH inequality vio-
lation for a maximally entangled state with even d is thus the
maximum allowed by Cirelson’s bound �29� whereas that of
maximally entangled state with odd d is not.

How good is the measurement scheme �3�? It is con-
structed so that for two qubits, i.e., when d=2, �4� gives the
same violation found in Refs. �4,5�, and is the maximal vio-
lation determined by Horodecki et al. �22�. The measurement
given by �3� is hence optimal for two-qubit states. For higher
dimensional quantum systems, we have looked at randomly
generated pure two-qudit states �d=3, . . . ,10� with their �un-
normalized� Schmidt coefficients uniformly chosen at ran-
dom from the interval �0,1�. For all of the 20 000 states

generated for each d, we found that with �3� as the initial
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measurement setting, the �iterative� LB algorithm never
gives a �BCH���d� that is different from �4� by more than
10−15, thus indicating that �4� is, at least, a local maximum of
the optimization problem.

Furthermore, for another 8000 randomly generated pure
two-qudit states, 1000 each for d=3, . . . ,10, an extensive
numerical search using more than 4.6
106 random initial
measurement guesses has not led to a single instance where
�BCH���d� is higher than that given in �4� �30�. These numeri-
cal results suggest that the measurement scheme given by �3�
may be the optimal measurement that maximizes the
Bell-CH inequality violation for arbitrary pure two-qudit
states.

III. MULTIPLE COPIES OF PURE STATES

Let us now look into the problem of whether nonlocal
correlations can be enhanced by performing collective mea-
surements on N�1 copies of an entangled quantum state
�31�. As our first example of nonlocality enhancement, con-
sider again those maximally entangled states residing in
Hilbert space with odd d. It is well known their maximal
Bell-CH/Bell-CHSH inequality violation cannot saturate Cir-
elson’s bound �32�. In fact, their best known Bell-CH in-
equality violation �5� is that given in �5�. By combining N
copies of these quantum states, it is readily seen that we
effectively end up with another maximally entangled state of
dN dimension. It then follows from �5� that their Bell-CH
violation under collective measurements increases monotoni-
cally with the number of copies N �see also Table I, columns

TABLE I. Best known Bell-CH inequality violation for some
bipartite pure entangled states, obtained from �3� with and without
collective measurements. Also included below is the upper bound of
�BCH���� obtained from the UB algorithm. The first column of the
table gives the number of copies N involved in the measurements.
Each quantum state is labeled by their nonzero Schmidt coeffi-
cients, which are separated by : in the subscripts attached to the ket
vectors; e.g., ���1:2:3:3 is the state with unnormalized Schmidt co-
efficients �ci	i=1

4 = �1,2 ,3 ,3	. For each quantum state there is a bold
entry corresponding to the smallest N such that the lower bound of
�BCH���� on the maximal violation exceeds the single-copy upper
bound coming from the UB algorithm. * represents maximal viola-
tion and † represents upper bounds on maximal violation.

N ��2:1� ��1:1:1� ��1:2:3� ��1:2:3:4� ��1:2:3:3� ��1:1:1:1:1�

Lower bound

1 0.14031* 0.13807 0.16756 0.18431 0.19259 0.16569

2 0.14031 0.18409 0.18307 0.19624 0.20516 0.19882

3 0.16169 0.19944 0.19451 0.20275 0.20685 0.20545

4 0.16169 0.20455 0.19642 0.20388 0.20706 0.20678

5 0.17964 0.20625 0.20254 0.20596 0.20710 0.20704

10 0.19590 0.20710 0.20643 0.20704 0.20711 0.20711

Upper bound

1 0.14031* 0.18409† 0.19624† 0.20711† 0.20711† 0.20569†
3 and 7�. In fact, it can be easily shown that this violation
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approaches asymptotically the Cirelson’s bound �29� in the
limit of large N. Therefore, if the maximal violation of these
quantum states is given by �5�, collective measurements can
already give better Bell-CH violation with N=2. Even if the
maximal violation is not given by �5�, it can be seen, by
comparing the upper bound of the single-copy violation from
the UB algorithm and the lower bound of the N-copy viola-
tion, from Table I that for d=3 and d=5, a Bell-CH violation
better than the maximal single-copy violation can always be
obtained when N is sufficiently large.

Such an enhancement is even more pronounced in the
case of nonmaximally entangled states. In particular, for N
copies of a �nonmaximally entangled� two-qubit state written
in the Schmidt basis,

��2��N = �cos ��00� + sin ��11���N, �6�

where 0���
 /4 �33�. The Bell-CH violation given by �4�
is

�BCH���2� =
p
�2

+
1 − p

2
�1 + sin2 2� − 1

2 , �7�

where

p = 1 − 1
2 cos2�N−1���

m=0

N−1

tan2m��1 − �− 1��N−1�!/m!�N−1−m�!� ,

is the total probability of finding ��2��N in one of the per-
fectly correlated two-dimensional subspaces �i.e., a subspace
with c2n−1=c2n� upon reordering of the Schmidt coefficients
in descending order.

It is interesting to note that for these two-qubit states,
their Bell-CH inequality violation for N=2k−1 copies, and
N=2k copies are identical �34� for all k�1, as illustrated in
the second column of Table I and in Fig. 1. This feature,
however, does not seem to generalize to higher dimensions.

Like the odd-dimensional maximally entangled state, the
violation of the Bell-CH inequality for any pure two-qubit
entangled states, as given by �4�, increases asymptotically
towards the Cirelson bound �29� with the number of copies
N, as can be seen in Fig. 1. A direct implication of this is
that, with a sufficiently large number of copies, the nonlocal-
ity present in any weakly entangled pure two-qubit states is
of no noticeable difference from that in a maximally en-
tangled two-qubit state.

Similarly, if we consider N copies of pure two-qutrit en-
tangled states written in the Schmidt form

��3��N = �cos ��00� + sin � cos ��11� + sin � sin ��22���N,

�8�

where 0���
 /4, 0���
 /4, it can be verified that their
Bell-CH inequality violation, as given by �4�, also increases
steadily with the number of copies. Thus, if �4� gives the
maximal Bell-CH violation for pure two-qutrit states, a better
Bell-inequality violation can also be attained by collective
measurements using two copies of these quantum states. The
explicit value of the violation can be found in columns 3 and
4 of Table I for two specific two-qutrit states. As above, even

if the maximal Bell-CH violation is not given by �4�, collec-
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tive measurements with �3� can definitely give a violation
that is better than the maximal-single-copy ones as a result of
the bound coming from the UB algorithm for a single copy
�see Table I�. Corresponding examples for pure bipartite
four-dimensional and five-dimensional quantum states can
also be found in the table.

Some intuition for the way in which a better Bell-CH
inequality violation may be obtained with collective mea-
surements and the measurement scheme �3� is that the reor-
dering of subspaces prior to the measurements �3� generally
increases the total probability of finding two-dimensional
subspaces with c2n=c2n−1, while ensuring that the remaining
two-dimensional subspaces are at least as correlated as any
of the corresponding single-copy two-dimensional sub-
spaces. The measurement then effectively projects onto each
of these subspaces �with Alice and Bob being guaranteed to
obtain the same result� and then performs the optimal mea-
surement on the resulting shared two-qubit state. Since the
optimal measurements in each of these perfectly correlated
two-dimensional subspaces give the maximal Bell-CH in-
equality violation, while the same measurements in the re-
maining two-dimensional subspaces give as much violation
as the single-copy violation, the multiple-copy violation is
thus generally greater than that of a single copy.

As one may have noticed, our measurement protocol
bears some resemblance with the entanglement concentration
protocol developed by Bennett et al. �35�. In entanglement
concentration Alice and Bob make slightly different projec-
tions onto subspaces that are spanned by all those ket vectors

FIG. 1. �Color online� Best known Bell-CH inequality violation
of pure two-qubit states obtained from �3�, plotted as a function of
�, which gives a primitive measure of entanglement; �=0 for bi-
partite pure product state and �=45° for bipartite maximally en-
tangled state. The curves from right to left represent increasing
numbers of copies. The dotted horizontal line at 1 /�2−1/2 is the
maximal possible violation of Bell-CH inequality; correlations al-
lowed by local realistic theories have values less than or equal to
zero.
sharing the same Schmidt coefficients thus obtaining a maxi-
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mally entangled state in a bipartite system of some dimen-
sion. One can also obtain improved Bell-inequality viola-
tions by adopting their protocol and first projecting Alice’s
Hilbert space into one of the perfectly correlated subspaces
and performing the best known measurements for a Bell-
inequality violation in each of these �not necessary two-
dimensional� subspaces. We have compared the Bell-CH in-
equality violation of an arbitrary pure two-qubit state derived
from each of these protocols and found that the violation
obtained using our protocol always outperforms the other.
The difference, nevertheless, diminishes as N→�. This ob-
servation provides another consistency check of the optimal-
ity of �4�.

IV. MULTIPLE COPIES OF MIXED STATES

The impressive enhancement in a pure state Bell-CH in-
equality violation naturally leads us to ask if the same con-
clusion can be drawn for mixed entangled states. The possi-
bility of obtaining a better Bell-inequality violation with
collective measurements, however, does not seem to gener-
alize to all entangled states.

Our first counterexample comes from the two-
dimensional Werner state �36�, which can seen as a mixture
of a singlet state and the maximally mixed state,

�w = �1 − p�
14

3
+

4p − 1

3
��−���−� , �9�

where p is the probability of finding a singlet state in this
mixture. This state is entangled for p�1/2 and violates the
Bell-CH inequality if and only if �22� p� pw
�3/�2+1� /4
�0.7803. Using the LB algorithm �15�, we have searched for
the maximal violation of �w with p� pw for N�4 copies but
no increase in the maximal violation of Bell-CH inequality
has ever been observed �see Fig. 2�. In fact, by using the UB
algorithm �15�, we find that for two copies of some Bell-CH
violating Werner states, their maximal Bell-CH inequality
violation is identical to the corresponding single-copy viola-
tion within numerical precision of 10−12. This strongly sug-
gests that for some Werner states the maximal Bell-CH in-
equality violation does not depend on the number of copies
N.

There are, nevertheless, some two-qubit states whose
maximal Bell-CH inequality violation for N=3 is higher than
the corresponding single-copy violation. In contrast to the
pure state scenario, the set of mixed two-qubit states seems
to be dominated by those whose three-copy Bell-CH inequal-
ity violation is not enhanced. In fact, among 50 000 ran-
domly generated Bell-CH violating two-qubit states �37�,
only about 0.38% of them were found to have their three-
copy Bell-CH inequality violation greater than their maximal
single-copy violation. Moreover, as can be seen in Fig. 3,
they are all clustered at regions with relatively low linear
entropy.

As with the pure state scenario, an enhancement of non-
local correlations in the Bell-CH setting seems to be more
prevalent in higher dimensional quantum systems. In particu-
lar, for all of the three-dimensional isotropic states �43�
-4
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�I3
= p��3�ME��3� + �1 − p�

19

9
�10�

that were found to violate the Bell-CH inequality, numerical
results obtained from the LB algorithm suggest that the
maximal violation increases steadily with the number of cop-
ies. Further results obtained using the UB algorithm show
that with N=3, some of the Bell-CH violating �I3

definitely
give better Bell-CH violation with collective measurements.
The results are summarized in Fig. 4.

Yet another question that one can ask is how much does
the enhancement of nonlocal correlations depend on the
choice of Bell inequality. To address this question, we have
also studied the enhancement of nonlocal correlations with
respect to other Bell inequalities for probabilities, in particu-
lar, the Bell-3322 inequality, the Bell-2233 inequality, and
the Bell-2244 inequality �44,45�. For these Bell inequalities,
we find that the possibility of enhancing nonlocal correla-
tions does seem to depend on both the number of alternative
settings and the number of possible outcomes involved in a
Bell experiment. The dependence on the number of out-
comes is particularly prominent in the case of Werner states,
where a large range of Bell-2244-inequality-violating Werner
states seem to achieve a higher two-copy violation, even
though their maximal Bell-CH inequality violation appar-
ently remains unchanged up to N=4 �Fig. 2�.

The dependence on the number of alternative settings can
be seen in the best known violation of �I3

with respect to the
Bell-CH inequality and the Bell-3322 inequality �Fig. 4�. In
particular, when the number of alternative settings is in-
creased from 2 �in the case of Bell-CH inequality� to 3 �in
the case of Bell-3322 inequality�, the range of states whereby
collective measurements were found to improve the Bell-
inequality violation is drastically reduced.

FIG. 2. �Color online� Best known expectation value of the Bell-
CH, Bell-3322, and Bell-2244 operators with respect to the two-
dimensional Werner states; p represents the overlap with a singlet
state. Also included is the upper bound on the maximal �BCH��W

�2

obtained from the UB algorithm �15�.
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FIG. 3. �Color online� Distribution of two-qubit states sampled
for improved Bell-CH violation by collective measurements.
The maximally entangled mixed states, which demarcate the
boundary of the set of density matrices on this concurrence-
entropy plane �39,40�, are represented by the solid line. Note that
as a result of the chosen distribution over mixed states �37� this
region is not well sampled. The region bounded by the solid line
and the horizontal dashed line �with concurrence equal to 1/�2�
only contain two-qubit states that violate the Bell-CH inequality
�42�; the region bounded by the solid line and the vertical dashed
line �with normalized linear entropy equal to 2/3� only contain
states that do not violate the Bell-CH inequality �41,42�. Two-qubit
states found to give a better three-copy Bell-CH violation are
marked with red crosses.
FIG. 4. �Color online� Best known expectation value of the
Bell-CH and Bell-3322 operators with respect to the three-
dimensional isotropic states; p is the fraction of maximally
entangled two-qutrit state in the mixture. Also included is the
upper bound on the maximal �BCH��I3

obtained from the UB algo-
rithm �15�.
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V. CONCLUSION

In this paper, we have focused on bipartite entangled sys-
tems and considered the enhancement of nonlocal correla-
tions by collective measurements without postselection. This
amounts to allowing an experiment in which a local unitary
is applied to a number of copies of the state � prior to the
Bell-inequality experiment.

We find that the Bell-CH inequality violation of all bipar-
tite pure entangled states can be enhanced by allowing col-
lective measurements even without postselection. For mixed
entangled states, however, explicit examples �Werner states�
have been presented to demonstrate that there may be en-
tangled states whose nonlocal correlations cannot be en-
hanced in any Bell-CH experiments. In fact, the set of mixed
two-qubit states whose Bell-CH violation can be increased
with collective measurements seems to be relatively small.

We have also done some preliminary studies on how the
usefulness of collective measurements depends on the choice
of Bell inequality and on the dimension of the subsystem.
Our data at the moment are consistent with the hypothesis
that the usefulness of collective measurements in Bell-
inequality experiments increases with the Hilbert space di-
mension and with the number of measurement outcomes al-
lowed by Bell inequality. On the other hand, as the number
of measurement settings allowed by the Bell inequality in-
creases the advantage provided by collective measurements
seems to diminish. However, note that we have not really
performed the systematic study required to establish such
trends, if they exist, due to the great numerical effort that
would be required. Given these observations, it does seem
that postselection is a lot more powerful than collective mea-
surements on their own in increasing Bell-inequality viola-
tion.
�14� P. G. Kwiat, S. Barraza-Lopez, A. Stefanov, and N. Gisin,
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An immediate question that follows from the present
work is what is the class of quantum states whereby collec-
tive measurements can increase their Bell-inequality viola-
tion? One motivation for studying our problem is to under-
stand better the set of quantum states that violate a Bell
inequality and are thus inconsistent with local realism. It has
been known for a long time that this set is a strict subset of
the entangled states if projective �36� or even generalized
measurements �46� on single copies of a system are permit-
ted. One might wonder whether collective measurements
without postselection allow us to violate Bell inequalities for
a larger set of states. However, we do not know of examples
where a state that does not violate a given Bell inequality
becomes violating under collective measurements when no
postselection is allowed. Moreover, for mixed states, the set
of states whose violations increase when collective measure-
ments are allowed appears to be rather restricted. This is
consistent with the recent work by Masanes �47� which sug-
gests that the set of states that violates a given Bell inequality
under collective measurements without postselection is a
subset of all distillable states.
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