37 research outputs found

    Living with a left ventricular assist device:Capturing recipients experiences using group concept mapping software

    Get PDF
    BackgroundLeft ventricular assist device (LVAD) implantation significantly impacts on a recipient's symptoms and quality of life. Capturing their experiences and post implant journey is an important part of clinical practice, research and device design evolution. Patient reported outcome measures (PROMs) are a useful tool for capturing that experience. However, patient reported outcome measures need to reflect recipients' experiences. Discussions with a patient partner group found that none of the frequently used cardiology PROMs captured their unique experiences.AimsTo capture the experiences and important issues for LVAD recipients. Develop a conceptual map of domains and items that should be reflected in patient reported outcomes.MethodsGroup concept mapping (GCM) web-based software was used to remotely capture and structure recipients' experiences across a wide geographical area. GCM is a semi-quantitative mixed method consisting of 3 stages: item generation, item sorting and rating (importance, relevance and frequency). Patient partners were involved in all aspects of the study design and development.Results18 LVAD recipients consented to take part. 101 statements were generated and multi-dimensional scaling, and hierarchical cluster analysis identified 9 clusters. Cluster themes included: Activities, Partner/family support, Travel, Mental wellbeing, Equipment and clothing, Physical and cognitive limitations, LVAD Restrictions, LVAD Challenges and positive impact of the LVAD (LVAD Positives). LVAD Positives were scored highest across all the rating variables, e.g., frequency (2.85), relevance (2.44) and importance (2.21). Other domains rated high for importance included physical and cognitive limitations (2.19), LVAD restrictions (2.11), Partner/family support (2.02), and Equipment and clothing (2.01).ConclusionOnline GCM software facilitated the inclusion of geographically dispersed recipients and provided useful insights into the experiences of LVAD recipients. The conceptual framework identifies important domains and items that should be prioritised and included in patient reported outcomes in future research, LVAD design evolution, and clinical practice

    Cost-eff ectiveness of diff erent strategies to monitor adults on antiretroviral treatment: a combined analysis of three mathematical models

    Get PDF
    Background WHO’s 2013 revisions to its Consolidated Guidelines on antiretroviral drugs recommend routine viral load monitoring, rather than clinical or immunological monitoring, as the preferred monitoring approach on the basis of clinical evidence. However, HIV programmes in resource-limited settings require guidance on the most costeff ective use of resources in view of other competing priorities such as expansion of antiretroviral therapy coverage. We assessed the cost-eff ectiveness of alternative patient monitoring strategies. Methods We evaluated a range of monitoring strategies, including clinical, CD4 cell count, and viral load monitoring, alone and together, at diff erent frequencies and with diff erent criteria for switching to second-line therapies. We used three independently constructed and validated models simultaneously. We estimated costs on the basis of resource use projected in the models and associated unit costs; we quantifi ed impact as disability-adjusted life years (DALYs) averted. We compared alternatives using incremental cost-eff ectiveness analysis. Findings All models show that clinical monitoring delivers signifi cant benefi t compared with a hypothetical baseline scenario with no monitoring or switching. Regular CD4 cell count monitoring confers a benefi t over clinical monitoring alone, at an incremental cost that makes it aff ordable in more settings than viral load monitoring, which is currently more expensive. Viral load monitoring without CD4 cell count every 6–12 months provides the greatest reductions in morbidity and mortality, but incurs a high cost per DALY averted, resulting in lost opportunities to generate health gains if implemented instead of increasing antiretroviral therapy coverage or expanding antiretroviral therapy eligibility. Interpretation The priority for HIV programmes should be to expand antiretroviral therapy coverage, fi rstly at CD4 cell count lower than 350 cells per μL, and then at a CD4 cell count lower than 500 cells per μL, using lower-cost clinical or CD4 monitoring. At current costs, viral load monitoring should be considered only after high antiretroviral therapy coverage has been achieved. Point-of-care technologies and other factors reducing costs might make viral load monitoring more aff ordable in future

    Health benefits, costs, and cost-effectiveness of earlier eligibility for adult antiretroviral therapy and expanded treatment coverage: a combined analysis of 12 mathematical models.

    Get PDF
    BACKGROUND: New WHO guidelines recommend ART initiation for HIV-positive persons with CD4 cell counts ≤500 cells/µL, a higher threshold than was previously recommended. Country decision makers must consider whether to further expand ART eligibility accordingly. METHODS: We used multiple independent mathematical models in four settings-South Africa, Zambia, India, and Vietnam-to evaluate the potential health impact, costs, and cost-effectiveness of different adult ART eligibility criteria under scenarios of current and expanded treatment coverage, with results projected over 20 years. Analyses considered extending eligibility to include individuals with CD4 ≤500 cells/µL or all HIV-positive adults, compared to the previous recommendation of initiation with CD4 ≤350 cells/µL. We assessed costs from a health system perspective, and calculated the incremental cost per DALY averted (/DALY)tocomparecompetingstrategies.Strategieswereconsidered′verycost−effective′ifthe/DALY) to compare competing strategies. Strategies were considered 'very cost-effective' if the /DALY was less than the country's per capita gross domestic product (GDP; South Africa: 8040,Zambia:8040, Zambia: 1425, India: 1489,Vietnam:1489, Vietnam: 1407) and 'cost-effective' if /DALYwaslessthanthreetimespercapitaGDP.FINDINGS:InSouthAfrica,thecostperDALYavertedofextendingARTeligibilitytoCD4≤500cells/µLrangedfrom/DALY was less than three times per capita GDP. FINDINGS: In South Africa, the cost per DALY averted of extending ART eligibility to CD4 ≤500 cells/µL ranged from 237 to 1691/DALYcomparedto2010guidelines;inZambia,expandedeligibilityrangedfromimprovinghealthoutcomeswhilereducingcosts(i.e.dominatingcurrentguidelines)to1691/DALY compared to 2010 guidelines; in Zambia, expanded eligibility ranged from improving health outcomes while reducing costs (i.e. dominating current guidelines) to 749/DALY. Results were similar in scenarios with substantially expanded treatment access and for expanding eligibility to all HIV-positive adults. Expanding treatment coverage in the general population was therefore found to be cost-effective. In India, eligibility for all HIV-positive persons ranged from 131to131 to 241/DALY and in Vietnam eligibility for CD4 ≤500 cells/µL cost $290/DALY. In concentrated epidemics, expanded access among key populations was also cost-effective. INTERPRETATION: Earlier ART eligibility is estimated to be very cost-effective in low- and middle-income settings, although these questions should be revisited as further information becomes available. Scaling-up ART should be considered among other high-priority health interventions competing for health budgets. FUNDING: The Bill and Melinda Gates Foundation and World Health Organization

    Vaccination against Human Influenza A/H3N2 Virus Prevents the Induction of Heterosubtypic Immunity against Lethal Infection with Avian Influenza A/H5N1 Virus

    Get PDF
    Annual vaccination against seasonal influenza viruses is recommended for certain individuals that have a high risk for complications resulting from infection with these viruses. Recently it was recommended in a number of countries including the USA to vaccinate all healthy children between 6 and 59 months of age as well. However, vaccination of immunologically naïve subjects against seasonal influenza may prevent the induction of heterosubtypic immunity against potentially pandemic strains of an alternative subtype, otherwise induced by infection with the seasonal strains. Here we show in a mouse model that the induction of protective heterosubtypic immunity by infection with a human A/H3N2 influenza virus is prevented by effective vaccination against the A/H3N2 strain. Consequently, vaccinated mice were no longer protected against a lethal infection with an avian A/H5N1 influenza virus. As a result H3N2-vaccinated mice continued to loose body weight after A/H5N1 infection, had 100-fold higher lung virus titers on day 7 post infection and more severe histopathological changes than mice that were not protected by vaccination against A/H3N2 influenza. The lack of protection correlated with reduced virus-specific CD8+ T cell responses after A/H5N1 virus challenge infection. These findings may have implications for the general recommendation to vaccinate all healthy children against seasonal influenza in the light of the current pandemic threat caused by highly pathogenic avian A/H5N1 influenza viruses

    COVID-19 vaccination, risk-compensatory behaviours, and contacts in the UK

    Get PDF
    The physiological effects of vaccination against SARS-CoV-2 (COVID-19) are well documented, yet the behavioural effects not well known. Risk compensation suggests that gains in personal safety, as a result of vaccination, are offset by increases in risky behaviour, such as socialising, commuting and working outside the home. This is potentially important because transmission of SARS-CoV-2 is driven by contacts, which could be amplified by vaccine-related risk compensation. Here, we show that behaviours were overall unrelated to personal vaccination, but—adjusting for variation in mitigation policies—were responsive to the level of vaccination in the wider population: individuals in the UK were risk compensating when rates of vaccination were rising. This effect was observed across four nations of the UK, each of which varied policies autonomously

    Antibody responses to SARS-CoV-2 vaccines in 45,965 adults from the general population of the United Kingdom

    Get PDF
    We report that in a cohort of 45,965 adults, who were receiving either the ChAdOx1 or the BNT162b2 SARS-CoV-2 vaccines, in those who had no prior infection with SARS-CoV-2, seroconversion rates and quantitative antibody levels after a single dose were lower in older individuals, especially in those aged >60 years. Two vaccine doses achieved high responses across all ages. Antibody levels increased more slowly and to lower levels with a single dose of ChAdOx1 compared with a single dose of BNT162b2, but waned following a single dose of BNT162b2 in older individuals. In descriptive latent class models, we identified four responder subgroups, including a ‘low responder’ group that more commonly consisted of people aged >75 years, males and individuals with long-term health conditions. Given our findings, we propose that available vaccines should be prioritized for those not previously infected and that second doses should be prioritized for individuals aged >60 years. Further data are needed to better understand the extent to which quantitative antibody responses are associated with vaccine-mediated protection

    Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines

    Get PDF
    Antibody responses are an important part of immunity after Coronavirus Disease 2019 (COVID-19) vaccination. However, antibody trajectories and the associated duration of protection after a second vaccine dose remain unclear. In this study, we investigated anti-spike IgG antibody responses and correlates of protection after second doses of ChAdOx1 or BNT162b2 vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United Kingdom general population. In 222,493 individuals, we found significant boosting of anti-spike IgG by the second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Older individuals and males had lower peak levels with BNT162b2 but not ChAdOx1, whereas declines were similar across ages and sexes with ChAdOX1 or BNT162b2. Prior infection significantly increased antibody peak level and half-life with both vaccines. Anti-spike IgG levels were associated with protection from infection after vaccination and, to an even greater degree, after prior infection. At least 67% protection against infection was estimated to last for 2–3 months after two ChAdOx1 doses, for 5–8 months after two BNT162b2 doses in those without prior infection and for 1–2 years for those unvaccinated after natural infection. A third booster dose might be needed, prioritized to ChAdOx1 recipients and those more clinically vulnerable

    Protection against SARS-CoV-2 Omicron BA.4/5 variant following booster vaccination or breakthrough infection in the UK

    Get PDF
    Following primary SARS-CoV-2 vaccination, whether boosters or breakthrough infections provide greater protection against SARS-CoV-2 infection is incompletely understood. Here we investigated SARS-CoV-2 antibody correlates of protection against new Omicron BA.4/5 (re-)infections and anti-spike IgG antibody trajectories after a third/booster vaccination or breakthrough infection following second vaccination in 154,149 adults ≥18 y from the United Kingdom general population. Higher antibody levels were associated with increased protection against Omicron BA.4/5 infection and breakthrough infections were associated with higher levels of protection at any given antibody level than boosters. Breakthrough infections generated similar antibody levels to boosters, and the subsequent antibody declines were slightly slower than after boosters. Together our findings show breakthrough infection provides longer-lasting protection against further infections than booster vaccinations. Our findings, considered alongside the risks of severe infection and long-term consequences of infection, have important implications for vaccine policy

    SARS-CoV-2 antibody trajectories after a single COVID-19 vaccination with and without prior infection

    Get PDF
    Given high SARS-CoV-2 incidence, coupled with slow and inequitable vaccine roll-out in many settings, there is a need for evidence to underpin optimum vaccine deployment, aiming to maximise global population immunity. We evaluate whether a single vaccination in individuals who have already been infected with SARS-CoV-2 generates similar initial and subsequent antibody responses to two vaccinations in those without prior infection. We compared anti-spike IgG antibody responses after a single vaccination with ChAdOx1, BNT162b2, or mRNA-1273 SARS-CoV-2 vaccines in the COVID-19 Infection Survey in the UK general population. In 100,849 adults median (50 (IQR: 37–63) years) receiving at least one vaccination, 13,404 (13.3%) had serological/PCR evidence of prior infection. Prior infection significantly boosted antibody responses, producing higher peak levels and/or longer half-lives after one dose of all three vaccines than those without prior infection receiving one or two vaccinations. In those with prior infection, the median time above the positivity threshold was >1 year after the first vaccination. Single-dose vaccination targeted to those previously infected may provide at least as good protection to two-dose vaccination among those without previous infection
    corecore