51 research outputs found

    Broad-band nonthermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants

    Full text link
    Molecular clouds are expected to emit non-thermal radiation due to cosmic ray interactions in the dense magnetized gas. Such emission is amplified if a cloud is located close to an accelerator of cosmic rays and if energetic particles can leave the accelerator site and diffusively reach the cloud. We consider here the situation in which a molecular cloud is located in the proximity of a supernova remnant which is efficiently accelerating cosmic rays and gradually releasing them in the interstellar medium. We calculate the multiwavelength spectrum from radio to gamma rays which is emerging from the cloud as the result of cosmic ray interactions. The total energy output is dominated by the gamma ray emission, which can exceed the emission in other bands by an order of magnitude or more. This suggests that some of the unidentified TeV sources detected so far, with no obvious or very weak counterparts in other wavelengths, might be in fact associated with clouds illuminated by cosmic rays coming from a nearby source. Moreover, under certain conditions, the gamma ray spectrum exhibit a concave shape, being steep at low energies and hard at high energies. This fact might have important implications for the studies of the spectral compatibility of GeV and TeV gamma ray sources.Comment: 13 pages, 6 figures, submitted to MNRA

    Diffuse Gamma-ray Emission from the Galactic Center - A Multiple Energy Injection Model

    Full text link
    We suggest that the energy source of the observed diffuse gamma-ray emission from the direction of the Galactic center is the Galactic black hole Sgr A*, which becomes active when a star is captured at a rate of ∼10−5\sim 10^{-5} yr^{-1}. Subsequently the star is tidally disrupted and its matter is accreted into the black hole. During the active phase relativistic protons with a characteristic energy ∼6×1052\sim 6\times 10^{52} erg per capture are ejected. Over 90% of these relativistic protons disappear due to proton-proton collisions on a timescale τpp∼104\tau_{pp} \sim 10^4 years in the small central bulge region with radius ∼50\sim 50 pc within Sgr A*, where the density is ≥103\ge 10^3 cm^{-3}. The gamma-ray intensity, which results from the decay of neutral pions produced by proton-proton collisions, decreases according to e−t/τppe^{-t/\tau_{pp}}, where t is the time after last stellar capture. Less than 5% of relativistic protons escaped from the central bulge region can survive and maintain their energy for >10^7 years due to much lower gas density outside, where the gas density can drop to ∼1\sim 1 cm−3^{-3}. They can diffuse to a ∼500\sim 500 pc region before disappearing due to proton-proton collisions. The observed diffuse GeV gamma-rays resulting from the decay of neutral pions produced via collision between these escaped protons and the gas in this region is expected to be insensitive to time in the multi-injection model with the characteristic injection rate of 10^{-5} yr^{-1}. Our model calculated GeV and 511 keV gamma-ray intensities are consistent with the observed results of EGRET and INTEGRAL, however, our calculated inflight annihilation rate cannot produce sufficient intensity to explain the COMPTEL data.Comment: 8 pages, 3 figures, accepted by A&

    Cold abscess forehead

    No full text
    • …
    corecore