53 research outputs found

    Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    Get PDF
    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs

    Viral entry and escape from antibody-mediated neutralization influence hepatitis C virus reinfection in liver transplantation

    Get PDF
    End-stage liver disease caused by chronic hepatitis C virus (HCV) infection is a leading cause for liver transplantation (LT). Due to viral evasion from host immune responses and the absence of preventive antiviral strategies, reinfection of the graft is universal. The mechanisms by which the virus evades host immunity to reinfect the liver graft are unknown. In a longitudinal analysis of six HCV-infected patients undergoing LT, we demonstrate that HCV variants reinfecting the liver graft were characterized by efficient entry and poor neutralization by antibodies present in pretransplant serum compared with variants not detected after transplantation. Monoclonal antibodies directed against HCV envelope glycoproteins or a cellular entry factor efficiently cross-neutralized infection of human hepatocytes by patient-derived viral isolates that were resistant to autologous host-neutralizing responses. These findings provide significant insights into the molecular mechanisms of viral evasion during HCV reinfection and suggest that viral entry is a viable target for prevention of HCV reinfection of the liver graft

    Hepatitis B virus mutations potentially conferring adefovir/tenofovir resistance in treatment-naive patients

    No full text
    Anti-hepatitis B virus (HBV) therapy leads to the emergence of mutant viral strains during the treatment of chronic hepatitis B with nucleos(t)ides analogues. The existence of HBV variants with primary antiviral resistance may be important for treatment choice. We studied two patients with chronic HBV infection by sequencing the HBV polymerase gene. They had adefovir- and tenofovir-related mutations in the viral polymerase, although they had never been treated. These mutations were rtV214A/rtN238T in one patient and rtA194T in the other. Thus, mutations in untreated patients deserve cautious surveillance. These data indicate that mutations that can theoretically confer adefovir or tenofovir resistance may emerge in treatment-naive patients

    Loss of hepatitis B surface antigen in a real-life clinical cohort of patients with chronic hepatitis B virus infection

    No full text
    International audienceBackground & AimsHepatitis B surface antigen (HBsAg) clearance is the main indicator of viral cure in patients infected with the hepatitis B virus (HBV). We sought to identify the parameters associated with HBsAg loss in a well-characterized real-life clinical cohort of chronically HBV-infected patients.MethodsPatients with chronic HBV infection were prospectively included, classified according to the disease stage, and followed up to determine parameters associated with HBsAg clearance.ResultsIn total, 315 patients were followed up for a mean of almost 6years. At study entry, 109 (34.6%) were inactive HBsAg carriers, 204 (64.8%) had chronic active hepatitis (CAH), and two (0.6%) were immune-tolerant carriers. During follow-up, 128 (62.7%) of the 204 patients with CAH received antiviral therapy. Sixty-nine had HBeAg-positive CAH: 55 (79.7%) were treated and 14 (20.3%) untreated. One hundred thirty-five had HBeAg-negative CAH: 73 (54.1%) were treated and 62 (45.9%) untreated. Inactive carriers showed an annual HBsAg clearance incidence rate of 23.4 cases per 1000 persons-years, which was higher than that of CAH groups. The clearance incidence rates (in cases per 1000 persons-years) of CAH groups were: treated HBeAg-positive (20.7), untreated HBeAg-positive (19.1), treated HBeAg-negative (10.1), and untreated HBeAg-negative (8.1). Older age (P=0.001) and inactive carrier status (P=0.019) were independent predictors of HBsAg clearance.ConclusionIn a well-characterized real-life clinical cohort of chronically HBV-infected patients in various disease phases, older age, and inactive HBsAg carrier status were the only predictors of HBsAg clearance, whereas anti-HBV therapy only marginally increased annual incidence of HBsAg loss

    Synergy of entry inhibitors with direct-acting antivirals uncovers novel combinations for prevention and treatment of hepatitis C

    No full text
    OBJECTIVE: Although direct-acting antiviral agents (DAAs) have markedly improved the outcome of treatment in chronic HCV infection, there continues to be an unmet medical need for improved therapies in difficult-to-treat patients as well as liver graft infection. Viral entry is a promising target for antiviral therapy. DESIGN: Aiming to explore the role of entry inhibitors for future clinical development, we investigated the antiviral efficacy and toxicity of entry inhibitors in combination with DAAs or other host-targeting agents (HTAs). Screening a large series of combinations of entry inhibitors with DAAs or other HTAs, we uncovered novel combinations of antivirals for prevention and treatment of HCV infection. RESULTS: Combinations of DAAs or HTAs and entry inhibitors including CD81-, scavenger receptor class B type I (SR-BI)- or claudin-1 (CLDN1)-specific antibodies or small-molecule inhibitors erlotinib and dasatinib were characterised by a marked and synergistic inhibition of HCV infection over a broad range of concentrations with undetectable toxicity in experimental designs for prevention and treatment both in cell culture models and in human liver-chimeric uPA/SCID mice. CONCLUSIONS: Our results provide a rationale for the development of antiviral strategies combining entry inhibitors with DAAs or HTAs by taking advantage of synergy. The uncovered combinations provide perspectives for efficient strategies to prevent liver graft infection and novel interferon-free regimens.status: publishe
    • …
    corecore