2,100 research outputs found
Micromagnetic simulations of the magnetization precession induced by a spin polarized current in a point contact geometry
This paper is devoted to numerical simulations of the magnetization dynamics
driven by a spin-polarized current in extended ferromagnetic multilayers when a
point-contact setup is used. We present (i) detailed analysis of methodological
problems arising by such simulations and (ii) physical results obtained on a
system similar to that studied in Rippard et al., Phys. Rev. Lett., v. 92,
027201 (2004). We demonstrate that the usage of a standard Slonczewski
formalism for the phenomenological treatment of a spin-induced torque leads to
a qualitative disagreement between simulation results and experimental
observations and discuss possible reasons for this discrepancy.Comment: Invited paper on MMM2005 (San Jose); accepted for publication in J.
Applied Physic
Design, development, fabrication, and delivery of three /3/ strain gage accelerometers Final report, Jun. 23, 1964 - Jun. 23, 1965
Strain gauge accelerometer based on anisotropic stress effect in P-N junctions using piezoelectric crystal
Toy model for molecular motors
A hopping model for molecular motors is presented consisting of a state with
asymmetric hopping rates with period 2 and a state with uniform hopping rates.
State changes lead to a stationary unidirectional current of a particle. The
current is explicitly calculated as a function of the rate of state changes,
including also an external bias field. The Einstein relation between the linear
mobility of the particle and its diffusion coefficient is investigated. The
power input into the system is derived, as well as the power output resulting
from the work performed against the bias field. The efficiency of this model is
found to be rather small.Comment: 11 pages Latex, 7 postscript figures, to be published in Physica
Subdiffusion-limited reactions
We consider the coagulation dynamics A+A -> A and A+A A and the
annihilation dynamics A+A -> 0 for particles moving subdiffusively in one
dimension. This scenario combines the "anomalous kinetics" and "anomalous
diffusion" problems, each of which leads to interesting dynamics separately and
to even more interesting dynamics in combination. Our analysis is based on the
fractional diffusion equation
DNA transport by a micromachined Brownian ratchet device
We have micromachined a silicon-chip device that transports DNA with a
Brownian ratchet that rectifies the Brownian motion of microscopic particles.
Transport properties for a DNA 50mer agree with theoretical predictions, and
the DNA diffusion constant agrees with previous experiments. This type of
micromachine could provide a generic pump or separation component for DNA or
other charged species as part of a microscale lab-on-a-chip. A device with
reduced feature size could produce a size-based separation of DNA molecules,
with applications including the detection of single nucleotide polymorphisms.Comment: Latex: 8 pages, 4 figure
Magnetization precession due to a spin polarized current in a thin nanoelement: numerical simulation study
In this paper a detailed numerical study (in frames of the Slonczewski
formalism) of magnetization oscillations driven by a spin-polarized current
through a thin elliptical nanoelement is presented. We show that a
sophisticated micromagnetic model, where a polycrystalline structure of a
nanoelement is taken into account, can explain qualitatively all most important
features of the magnetization oscillation spectra recently observed
experimentally (S.I. Kiselev et al., Nature, vol. 425, p. 380 (2003), namely:
existence of several equidistant spectral bands, sharp onset and abrupt
disappearance of magnetization oscillations with increasing current, absence of
the out-of-plane regime predicted by a macrospin model and the relation between
frequencies of so called small-angle and quasichaotic oscillations. However, a
quantitative agreement with experimental results (especially concerning the
frequency of quasichaotic oscillations) could not be achieved in the region of
reasonable parameter values, indicating that further model refinement is
necessary for a complete understanding of the spin-driven magnetization
precession even in this relatively simple experimental situation.Comment: Submitted to Phys. Rev. B; In this revised version figure positions
on the page have been changed to ensure correct placements of the figure
caption
Coulomb Drag between One-Dimensional Wigner Crystal Rings
We consider the Coulomb drag between two metal rings in which the long range
Coulomb interaction leads to the formation of a Wigner crystal. The first ring
is threaded by an Ahranov Bohm flux creating a persistent current J_0. The
second ring is brought in close proximity to the second and due to the Coulomb
interaction between the two rings a drag current J_D is produced in the second.
We investigate this system at zero temperature for perfect rings as well as the
effects of impurities. We show that the Wigner crystal state can in principle
lead to a higher ratio of drag current to drive current J_D/J_0 than in weakly
interacting electron systems.Comment: 12 pages, 10 figure
Weak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension
In addition to thermal noise, which is essential to promote conformational
transitions in biopolymers, cellular environment is replete with a spectrum of
athermal fluctuations that are produced from a plethora of active processes. To
understand the effect of athermal noise on biological processes, we studied how
a small oscillatory force affects the thermally induced folding and unfolding
transition of an RNA hairpin, whose response to constant tension had been
investigated extensively in both theory and experiments. Strikingly, our
molecular simulations performed under overdamped condition show that even at a
high (low) tension that renders the hairpin (un)folding improbable, a weak
external oscillatory force at a certain frequency can synchronously enhance the
transition dynamics of RNA hairpin and increase the mean transition rate.
Furthermore, the RNA dynamics can still discriminate a signal with resonance
frequency even when the signal is mixed among other signals with nonresonant
frequencies. In fact, our computational demonstration of thermally induced
resonance in RNA hairpin dynamics is a direct realization of the phenomena
called stochastic resonance (SR) and resonant activation (RA). Our study,
amenable to experimental tests using optical tweezers, is of great significance
to the folding of biopolymers in vivo that are subject to the broad spectrum of
cellular noises.Comment: 22 pages, 7 figure
Variational bound on energy dissipation in plane Couette flow
We present numerical solutions to the extended Doering-Constantin variational
principle for upper bounds on the energy dissipation rate in turbulent plane
Couette flow. Using the compound matrix technique in order to reformulate this
principle's spectral constraint, we derive a system of equations that is
amenable to numerical treatment in the entire range from low to asymptotically
high Reynolds numbers. Our variational bound exhibits a minimum at intermediate
Reynolds numbers, and reproduces the Busse bound in the asymptotic regime. As a
consequence of a bifurcation of the minimizing wavenumbers, there exist two
length scales that determine the optimal upper bound: the effective width of
the variational profile's boundary segments, and the extension of their flat
interior part.Comment: 22 pages, RevTeX, 11 postscript figures are available as one
uuencoded .tar.gz file from [email protected]
- …
