We consider the Coulomb drag between two metal rings in which the long range
Coulomb interaction leads to the formation of a Wigner crystal. The first ring
is threaded by an Ahranov Bohm flux creating a persistent current J_0. The
second ring is brought in close proximity to the second and due to the Coulomb
interaction between the two rings a drag current J_D is produced in the second.
We investigate this system at zero temperature for perfect rings as well as the
effects of impurities. We show that the Wigner crystal state can in principle
lead to a higher ratio of drag current to drive current J_D/J_0 than in weakly
interacting electron systems.Comment: 12 pages, 10 figure