297 research outputs found

    Thematic mapper research in the earth sciences: Small scale patches of suspended matter and phytoplankton in the Elbe River Estuary, German Bight and Tidal Flats

    Get PDF
    A Thematic Mapper (TM) field experiment was followed by a data analysis to determine TM capabilities for analysis of suspended matter and phytoplankton. Factor analysis showed that suspended matter concentration, atmospheric scattering, and sea surface temperature can be retrieved as independent factors which determine the variation in the TM data over water areas. Spectral channels in the near infrared open the possibility of determining the Angstrom exponent better than for the coastal zone color scanner. The suspended matter distribution may then be calculated by the absolute radiance of channel 2 or 3 or the ratio of both. There is no indication of whether separation of chlorophyll is possible. The distribution of suspended matter and sea surface temperature can be observed with the expected fine structure. A good correlation between water depth and suspended matter distribution as found from ship data can now be analyzed for an entire area by the synoptic view of the TM scenes

    A Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet

    Full text link
    We have investigated by Monte-Carlo simulation the phase diagram of a three-dimensional Ising model with nearest-neighbor ferromagnetic interactions and small, but long-range (Coulombic) antiferromagnetic interactions. We have developed an efficient cluster algorithm and used different lattice sizes and geometries, which allows us to obtain the main characteristics of the temperature-frustration phase diagram. Our finite-size scaling analysis confirms that the melting of the lamellar phases into the paramgnetic phase is driven first-order by the fluctuations. Transitions between ordered phases with different modulation patterns is observed in some regions of the diagram, in agreement with a recent mean-field analysis.Comment: 14 pages, 10 figures, submitted to Phys. Rev.

    Die Farbe des Küstenwasser

    Get PDF

    The latest advances in wireless communication in aviation, wind turbines and bridges

    Get PDF
    Present-day technologies used in SHM (Structural Health Monitoring) systems in many implementations are based on wireless sensor networks (WSN). In the context of the continuous development of these systems, the costs of the elements that form the monitoring system are decreasing. In this situation, the challenge is to select the optimal number of sensors and the network architecture, depending on the wireless system’s other parameters and requirements. It is a challenging task for WSN to provide scalability to cover a large area, fault tolerance, transmission reliability, and energy efficiency when no events are detected. In this article, fundamental issues concerning wireless communication in structural health monitoring systems (SHM) in the context of non-destructive testing sensors (NDT) were presented. Wireless technology developments in several crucial areas were also presented, and these include engineering facilities such as aviation and wind turbine systems as well as bridges and associated engineering facilities

    Ocean Colour remote sensing in the Southern Laptev Sea: evaluation and applications

    Get PDF
    Enhanced permafrost warming and increased arctic river discharges have heightened concern about the input of terrigeneous matter into Arctic coastal waters. We used optical operational satellite data from the Ocean Colour sensor MERIS onboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigeneous matter in the southern Laptev Sea. MERIS satellite data from 2006 on to 2011 were processed using the Case2Regional Processor, C2R, installed in the open-source software ESA BEAM-VISAT. Since optical remote sensing using Ocean Colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS parameters with surface water sampling data from the Russian-German ship expeditions LENA2010 and TRANSDRIFT-XVII taking place in August and September 2010 in the southern Laptev Sea. The surface waters of the southern Laptev Sea are characterized by low transparencies, due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of Suspended Particulate Matter, SPM, and coloured Dissolved Organic Matter, cDOM. The mapped calculated optical water parameters, such as the first attenuation depth, Z90, the attenuation coefficient, k, and Suspended Particulate Matter, SPM, visualize resuspension events that occur in shallow coastal and shelf waters indicating vertical mixing events. The mapped optical water parameters also visualize that the hydrography of the Laptev Sea is dominated by frontal meanders with amplitudes up to 30 km and eddies and filaments with diameters up to 100 km that prevail throughout the ice-free season. The meander crests, filaments and eddy-like structures that become visible through the mapped MERIS C2R parameters indicate enhanced vertical and horizontal transport energy for the transport of terrigenous and living biological matter in the surface waters during the ice-free season

    Validation of standard and alternative satellite ocean-color chlorophyll products off Western Iberia

    Get PDF
    Chlorophyll a concentration (Chl) product validation off theWestern Iberian coast is here undertaken by directly comparing remote sensing data with in situ surface reference values. Both standard and recently developed alternative algorithms are considered for match-up data analysis. The investigated standard products are those produced by the MERIS (algal 1 and algal 2) and MODIS (OC3M) algorithms. The alternative data products include those generatedwithin the CoastColour Project and Ocean Color Climate Change Initiative (OC-CCI) funded by ESA, as well as a neural net model trained with field measurements collected in the Atlantic off Portugal (MLPATLP). Statistical analyses showed that satellite Chl estimates tend to be larger than in situ reference values. The study also revealed that a non-uniform Chl distribution in the water column can be a concurring factor to the documented overestimation tendency when considering larger optical depth match-up stations. Among standard remote sensing products, MODIS OC3M and MERIS algal 2 yield the best agreement with in situ data. The performance of MLPATLP highlights the capability of regional solutions to further improve Chl retrieval by accounting for environmental specificities. Results also demonstrate the relevance of oceanographic regions such as the Nazaré area to evaluate how complex hydrodynamic conditions can influence the quality of Chl products.This studywas performed in the framework of HabSpot FCT Project, PTDC/MAR/100348/2008 and European Space Agency projects DUE CoastColour (ESRIN/AO/1-6141/09/l-EC) and Climate Change Iniciative — Ocean Color (AO-1/6207/09/I-LG). The work has been also partially supported by the European Space Agency within the framework of the MERIS Validation Activities under contract n. 12595/09/I-OL, and sampling activities benefited from European projects HERMES (GOCE-CT-2005-511234) and Hermione (EC contract 226354) support. We would like to thank NASA OBPG for the MODIS data and ESA Project AOPT-2423 for providing MERIS full resolution images. Ana C. Brito was funded by a Portuguese Post-doc grant from FCT (BPD/63017/2009) and by the Investigador FCT Program (IF/00331/2013). Davide D'Alimonte was funded by Investigador FCT Program (IF/00541/2013).info:eu-repo/semantics/publishedVersio

    Sensor capability and atmospheric correction in ocean colour remote sensing

    Get PDF
    © 2015 by the authors; licensee MDPI, Basel, Switzerland. Accurate correction of the corrupting effects of the atmosphere and the water's surface are essential in order to obtain the optical, biological and biogeochemical properties of the water from satellite-based multi-and hyper-spectral sensors. The major challenges now for atmospheric correction are the conditions of turbid coastal and inland waters and areas in which there are strongly-absorbing aerosols. Here, we outline how these issues can be addressed, with a focus on the potential of new sensor technologies and the opportunities for the development of novel algorithms and aerosol models. We review hardware developments, which will provide qualitative and quantitative increases in spectral, spatial, radiometric and temporal data of the Earth, as well as measurements from other sources, such as the Aerosol Robotic Network for Ocean Color (AERONET-OC) stations, bio-optical sensors on Argo (Bio-Argo) floats and polarimeters. We provide an overview of the state of the art in atmospheric correction algorithms, highlight recent advances and discuss the possible potential for hyperspectral data to address the current challenges

    Atmospheric correction of SeaWIFS imagery for turbid coastal and inland waters

    Get PDF
    The standard SeaWiFS atmospheric correction algorithm, designed for open ocean water, has been extended for use over turbid coastal and inland waters. Failure of the standard algorithm over turbid waters can be attributed to invalid assumptions of zero water-leaving radiance for the near-infrared bands at 765 and 865 nm. In the present study these assumptions are replaced by the assumptions of spatial homogeneity of the 765:865-nm ratios for aerosol reflectance and for water-leaving reflectance. These two ratios are imposed as calibration parameters after inspection of the Rayleigh-corrected reflectance scatterplot. The performance of the new algorithm is demonstrated for imagery of Belgian coastal waters and yields physically realistic water-leaving radiance spectra. A preliminary comparison with in situ radiance spectra fbr the Dutch Lake Markermeer shows significant improvement over the standard atmospheric correction algorithm. An analysis is made of the sensitivity of results to the choice of calibration parameters, and perspectives for application of the method to other sensors are briefly discussed. (C) 2000 Optical Society of America
    corecore