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An experimental and computational study of aM1 � 1:4 transonic shockwave in a parallel-walled duct subject to

downstream pressure perturbations in the frequency range of 16–90 Hz has been conducted. The dynamics of

unsteady shock motion and aspects of the unsteady transonic shock and turbulent tunnel-floor boundary-layer

interaction have been investigated. The numerical computations were performed using an unsteady Reynolds-

averaged Navier–Stokes scheme. It is found that the (experimentally measured) shock dynamics are generally well

replicated by the numerical scheme, especially at relatively low (�40 Hz) frequencies. However, variations in shock/

boundary-layer interaction structure during unsteady shock motion observed in experiments are not always well

predicted by the simulation. Significantly, the computations predict variations in shock/boundary-layer interaction

size due to shock motion that are much larger and in the opposite sense to the variations observed in experiments.

Comparison of the unsteady results from the present study with steady (experimental) results from the literature

suggests that unsteady Reynolds-averaged Navier–Stokes code used in the present studymodels the unsteady shock/

boundary-layer interaction behavior as quasi-steady, whereas experiments suggest that it is more genuinely

unsteady. Further work developing numerical methods that demonstrate a more realistic sensitivity of shock/

boundary-layer interaction structure to unsteady shock motion is required.

Nomenclature

a = local speed of sound, ms�1

Cf = skin-friction coefficient
fshock = shock-oscillation frequency, Hz
H = compressible boundary-layer shape factor, ��=�
Hi = incompressible boundary-layer shape factor, ��i =�i
M1 = freestream Mach number
p0 = tunnel stagnation pressure, kPa
Re�� = Reynolds number based on boundary-layer

displacement thickness, �U1�
�=�

Stinviscid = inviscid Strouhal number for shock-oscillation
frequency, fshockxs�s=�a � u�

Stviscous = viscous Strouhal number for shock-oscillation
frequency, fshock�0=U1

U1 = freestream velocity, ms�1

u = local flow velocity, ms�1

x, y, z = streamwise, tunnel-floor normal, and tunnel
spanwise coordinates, mm

xs�s = distance between elliptical shaft and mean shock
position, mm

�0 = incoming boundary-layer thickness (measured to
99% U1), mm

�� = compressible boundary-layer displacement
thickness,

R
�
0 �1 � ��u=�eue�� dy, mm

��i = incompressible boundary-layer displacement
thickness,

R
�
0 �1 � �u=ue�� dy, mm

� = compressible boundary-layer momentum
thickness,

R
�
0 ��u=�eue��1 � �u=ue�� dy, mm

�i = incompressible boundary-layer momentum
thickness,

R
�
0 �u=ue��1 � �u=ue�� dy, mm

I. Introduction

S HOCK/BOUNDARY-LAYER interactions (SBLIs) occur in
almost all high-speed aerodynamic applications. Examples

include the wings of aircraft traveling at transonic speed, stages of
high-speed turbomachinery components, helicopter rotor blades,
high-speed ballistics and missiles and the propulsive nozzles and
engine intakes of supersonic aircraft. In all of these examples, the
behavior of SBLIs is of critical importance for performance and it is
for this reason transonic SBLIs are a well-researched and generally
well-understood phenomenon. However, all SBLIs are known to
exhibit some unsteady behavior and this is one areawhere our under-
standing is less comprehensive. This unsteadiness can range from
relatively-small-scale fluctuations that produce highly localized
effects to more large-scale unsteadiness that can impact an entire
flowfield. The large changes in local flow properties that occur
through SBLIs mean that unsteadiness can lead to large fluctuations
in properties such as pressure and heat transfer, which can lead to
undesirable phenomena such as transonic buffeting of aircraft wings,
unstarting of supersonic engines, and high levels of unpredictable
heat transfer in hypersonic applications. It is primarily a lack of
understanding of themechanisms involved in situations such as these
that can make unsteady SBLIs dangerously unpredictable.

Transonic SBLIs are sensitive to both upstream and downstream
flow conditions and changes in either can lead to shock motion. The
dynamic response of transonic shocks to unsteady pressure pertur-
bations is a complex phenomenon, and our understanding has not
reached the level where unsteady shock motion can be predicted
reliably. The role and relative importance of inviscid and viscous
factors is an area of particular interest and current research [1].
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Computational simulations of unsteady compressible internal flows
are relatively common [2–4], although the vast majority of these use
simplifying assumptions to reduce the complexity of a problem and
make it easier to solve. For example, often a flow is assumed to be
symmetrical and primarily two-dimensional (or at least quasi-two-
dimensional) so that only a section of the real flow is computed (e.g.,
half or quarter of a channel) and boundary conditions such as
sidewalls are simplified by assuming they are inviscid or that the flow
is periodic in the spanwise direction. However, the ever-increasing
availability of computing power is leading fluid dynamicists to
consider the development of new computational approaches and
methods for predicted more complex and larger-scale unsteady
flows.

A number of experimental and numerical studies [2,3,5–8] have
implemented a variable geometry second throat to investigate the
effects of downstream periodic pressure perturbations on shocks
both experimentally and numerically. The authors of these studies
found that the amplitude of shock motion decreased with increasing
frequency (see Fig. 1). It was recently shown [9] that the dynamics of
normal shocks in simple geometry ducts subject to perturbations in
downstream pressure can be predicted analytically and that this
analytical relationship could be used to explain the observed
amplitude-frequency trend. However, it was found in a related study
[10] that transonic shocks exhibited unexpected dynamic behavior as
the frequency of downstream pressure perturbations was increased
and this was not captured by the analytical model. The reason for this
behavior remains an open question, although it has been postulated
that viscous effects (such as the mechanism by which downstream
disturbances propagate upstream through the flow to reach and
influence the shock) may be significant in understanding the physics
of unsteady shock motion.

In the present paper, the results from experimental and numerical
studies of the response to downstream pressure perturbations of a
transonic M1 � 1:4 shock in a parallel-walled duct are presented.
The dynamics of shock motion are analyzed together with the
interaction structure between the (naturally grown, tunnel floor)
turbulent boundary layer and a transonic shock with and without a
fluctuating downstream pressure using modern experimental
techniques. Fully three-dimensional, time-accurate numerical simu-
lations are performed using an unsteady Reynolds-averaged Navier–
Stokes (URANS) method. Particular attention is given to the com-
parison of experimental measurements and numerical predictions
with an emphasis on understanding the aspects of unsteady SBLIs
that a modern URANS code can and cannot yet reliably predict and
the reasons behind this. Quantitative analysis of experimentally

observed dynamic changes of the unsteady SBLI structure is also
carried out to further our understanding of how SBLIs respond in
externally unsteady flowfields.

II. Methodology

A. Experiments

Experiments have been performed in the blowdown-type
supersonic wind tunnel no. 1 of the University of Cambridge. The
tunnel has a rectangularworking sectionwith a constant cross section
114mmwide by 178mm high. In the present study, the tunnel throat
has been set to give a freestreamMach number of 1.4 in the parallel-
walledworking section. Theworking section of the tunnel is depicted
in Fig. 2a. Downstream of the working section, the flow passes
through a 1-m-long diffuser, followed by a long, large, cross-
sectional area pipe before entering a large silencing chamber and
finally exiting through a series of vents into the atmosphere. The total
length of the flow path downstream of the working section is
estimated to be 20 m. In the absence of a shock, the streamwise
pressure gradient in the parallel-walled tunnel working section is
extremely small and streamwise changes in the properties of the
naturally grown tunnel-wall boundary layers in the region of interest
for this study are negligible. Properties of the incoming boundary
layer with this tunnel configuration are presented in Table 1. These
measurements are taken at the tunnel centerline.

During unsteady tests, the elliptical shaft seen in Fig. 2a was
rotated using a 400 W dc motor mounted outside the tunnel (not
shown) at frequencies between 8 and 45 Hz to produce a periodic
variation in tunnel backpressure at a frequency double that of shaft
rotation. The cycle-averaged variation of downstream pressure
measured at transducer T9 (x� 330 mm) for the range of cam
rotational frequencies tested is plotted in Fig. 2b. The tunnel
operating conditions were chosen to give a mean shock position at
the center of the viewing window (x� 0 mm). Tunnel run times of
up to 35 s were possible with the configuration shown in Fig. 2.

High-speed schlieren images of the unsteady flow were captured
using a Photron FASTCAM-ultima APX high-speed camera fitted
with a 180mm lens at a frame rate of 4 kHz with an exposure time of
0.125 ms and a resolution of 0:2 mm=pixel. Images presented here
have been cropped and processed to remove noise due to irregular
camera pixel sensitivity. A line-scanning technique was used to
determine the shock position in each frame. The maximum shock
speed observed in experiments was 9 ms�1, which implies that the
shock could potentially move a streamwise distance of up to 1.1 mm
during an exposure. Hence, it is estimated that shock position in a
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given video frame can be determined with an absolute uncertainty of
�1 mm (based mainly on shock movement during an exposure) and
with an uncertainty relative to its position in a previous or subsequent
frame of �0:2 mm (based on camera resolution). Based on these
values, estimates of shock velocity and acceleration from a single
measured cycle of shock motion (calculated with second-order-
accurate central-difference schemes based on shock position)
have associated uncertainties of approximately �0:6 ms�1 and
�2400 ms�2, respectively. To reduce uncertainty in experiments,
high-speed video footage of a large number of shock oscillations
(typically several hundred) were obtained for each test case and
processed to produce a representative average plot of shock position,
which was then processed to give information on shock velocity and
acceleration. It is estimated that this averaging process reduces the
uncertainty in calculated values of velocity and acceleration by at
least an order of magnitude relative to the values quoted above for a
single cycle.

Static wall-pressure measurements were made using DRUCK
PDCR-200 series transducers, labeled T1 to T10 in Fig. 2a. These
were calibrated daily and have an accuracy of better than �1%. A
sampling rate of 4 kHz was used in both steady and unsteady tests to
capture sufficient data for the calculation of reliable mean values. In
unsteady tests, pressure data acquisition was synchronized with
high-speed schlieren video to allow the pressure data to be sorted
temporally and spatially relative to the instantaneous position of the
shock wave in the tunnel. Pressure data obtained this way in the
region of the shock wave (sampled at transducers T1–T8) were then
processed using a rolling-average technique with a bin size of 6 mm
to produce the plots presented in this paper.

Velocity measurements of the unsteady flowfield have been made
using laser Doppler anemometry (LDA). The measuring volume
diameter was approximately 75 �m and measurements were
possible 0.1 mm away from the wall. Olive oil droplets with mean
diameter of 200 nm were used to seed the flow, and data rates in
excess of 50 kHz were realized. Despite this high data rate, a large
number of tunnel runs were required to fully characterize the
unsteady flowfield. Data processing of LDAmeasurements involved
using high-speed schlieren images to determine the precise location
of the LDAmeasurement volume at all times relative spatially to the
shock and also temporally within the cycle of shock motion. The
measuring volume position was then changed between runs to
gradually build up a complete picture of the flow at different points in
the cycle. For a more detailed description of the experimental facility
and methodology, the reader is referred to previously published
work [9,11].

B. Numerical Simulations

Numerical simulations of the steady and unsteady flowfields have
been performed by NUMECA International using their FINE/Turbo
flow solver [12]. The flow solver is a three-dimensional, explicit,
density-based, structured, multiblock URANS code using the finite
volume approach. Central-space discretization is employed together
with Jameson-type artificial dissipation. A four-stage Runge–Kutta
scheme is selected for the temporal discretization. Multigrid, local
time-stepping, and implicit residual smoothing are also used in order
to speed up the convergence. Time-accurate computations (that allow
the unsteady viscous aspects of the flow to be resolved) are donewith
a dual-time-stepping method. The temporal derivative is discretized
using a second-order backward Euler difference. In an effort to
capture the experimental inflow as accurately as possible, simu-
lations have modeled the tunnel upstream of the working section. A
typical computational mesh is shown in Fig. 3. Results presented
here have been obtained using the two-equation k-� turbulence
model developed by Yang and Shih [13]. Further details of the
numerical method and grid can be found in a previously published
paper [14].

To simulate the downstreampressure disturbances generated at the
rotating elliptical shaft in experiments, time-accurate simulations of
the complete tunnel working section with a rotating mesh at the shaft
have been performed. The temporal resolution was chosen to give
160 time steps per revolution of the shaft. The results of these
simulations are presented in Fig. 4. Figure 4b shows that the pressure
waves generated at the elliptical shaft rapidly develop into highly
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Table 1 Characteristic parameters of the

incoming boundary layer in experiments

Parameter Valuea

P0, kPa 140
M1 1.4
�, mm 4.6
��, mm 0.56 (0.80)
�, mm 0.41 (0.37)
Hi 1.35 (2.15)
Re�� (18,500)
Cf 0.00214

aIncompressible values are given, with compressible
values in parentheses.
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planar waves as they travel upstream. Figure 4a shows that the
strength of these waves remains almost constant as they travel
upstream with an amplitude of around 4% of the mean local static
pressure (as annotated at four points upstream of the shaft on the
plot). For reference, the downstream pressure in experiments is
measured 0.46mupstreamof the shaft (transducer T9, see Fig. 2) and
the shock is located 0.79 m (on average) upstream of the shaft.

III. Results

A. Characterization of the Steady M1 � 1:4 SBLI

Experimental and numerical results that characterize the steady
M1 � 1:4 SBLI are presented in Fig. 5. In these tests, the elliptical
shaft shown in Fig. 2a was held stationary to impose a constant
backpressure. High-speed schlieren video of the so-called steady
shock wave in experiments with this arrangement revealed that the
shock position remained constant to within �1 mm during steady
tests. The schlieren photograph from experiments in Fig. 5a shows
the existence of a � shock foot with a faint leading shock leg. This
suggests that the interaction is somewhere in-between the classical
weak (attached) and strong (separated) cases that are well docu-
mented in the literature [15,16]. The surface oil-flow visualization
from experiments in Fig. 5c shows no evidence of reversed
(separated) flow, although a large decrease in surface shear stress at
the shock location does exist (see annotation). There is evidence that
significant regions of the flow are affected by the presence of the
tunnel corners. The experimentally measured static pressure rise
through the interaction in Fig. 5e is consistent with that for an
attached interaction (see, for example, [15]).

Thevelocity profiles in Fig. 5f show that the inflowupstreamof the
interaction is well predicted by the numerical scheme, although the
boundary layer is slightly too thick (�� 6 mm compared with
4.6 mm in experiments). Downstream of the interaction, the
agreement is less good: the numerical scheme appears to overpredict
the rate at which the postshock boundary layer recovers, and this
leads to a boundary layer that has too full of a profile in the near-wall
region. The postshock freestream velocity is also overpredicted
slightly. A possible explanation for this is that the large interaction
sizes predicted by the numerical scheme (especially in the corners
and on the sidewalls) cause more of a blockage effect for the core
flow, which leads to a greater centerline acceleration.

Overall, the numerical results presented in Fig. 5 show a
reasonable level of agreement with experiments, although some
discrepancies exist. The most significant discrepancy is an over-
prediction of the interaction size. This leads to a larger, more
smeared, interaction structure than was observed in experiments
(compare Figs. 5a and 5b) and also to an overestimate of the predicted
interaction upstream influence, which can be seen clearly in the plot
of static pressure (Fig. 5e). The surface streamlines predicted by the
numerical solution (Fig. 5d) show that the size of the corner effects
are also slightly overpredicted, which indicates that the SBLIs on the
tunnel sidewalls are also slightly too large.

No asymmetry was observed in any of the steady or unsteady
experimental or numerical results presented here. Although the flow
does exhibit some three-dimensionality, these three-dimensional
aspects are seen in both experimental and computational results. This
gives some confidence in the numerical scheme’s ability to capture
such features of the flow, and hence these features are not considered

Fig. 3 Typical computational mesh used for steady and unsteady calculations (3,300,000 cells).
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to prevent a valuable comparison between the experimentally
measured and numerically simulated flowfields.

B. Shock Dynamics of a M1 � 1:4 SBLI Subject

to Unsteady Forcing

In the absence of an imposed downstream pressure variation, the
transonic M1 � 1:4 shock exhibited no large-scale self-excited
unsteady motion. When subjected to sinusoidal variations of down-
stream pressure, the tunnel’s normal recovery shock was observed to
undergo periodic oscillatory motion in the streamwise direction.
Experiments with forced shock-oscillation frequencies of 16, 23, 43,
70, and 90Hzwere performed. These frequencies are compared with
two relevant timescales of the flow through the calculation of two
different Strouhal numbers: First, a so-called viscous Strouhal
number is defined as

Stviscous � fshock�0=U1 (1)

where fshock is the frequency of forced shock oscillation, U1 is the
incoming freestream velocity (�410 ms�1) and �0 is the incoming
boundary-layer thickness (�4:6 mm). Second, an inviscid Strouhal
number is defined as

Stinviscid � fshockxs�s=�a � u� (2)

where (a � u) is the acoustic wave speed downstream of the shock
(�50 ms�1) and xs�s is the mean streamwise distance between the
elliptical shaft and the shock wave (�790 mm).

Using the above definitions, the frequencies investigated in the
present study yield values of 0:00018< Stviscous < 0:00101 and
0:25< Stinviscid < 1:42. These results show that the shock wave
excitation frequencies are very low compared with characteristic
viscous timescales of the flow, but they are comparable with the
inviscid (acoustic) timescales. This suggests that the shock wave’s
response to periodic forcing is likely to be acoustically driven and
that viscous aspects of theflow (such as SBLIs) are likely to behave in
a quasi-steady manner.

Schlieren images showing four points in a single period of shock
oscillation with a forcing frequency of 43 Hz are shown in Fig. 6.
Points A and C correspond to when the shock is at its most down-
stream and upstream positions during an oscillation, respectively.
Points B and D correspond to when the shock is at the mean position
in its oscillation (x� 0 mm) and is traveling upstream and
downstream, respectively.

It has been shown that the dynamics of shock motion are related
primarily to changes in the relativeMach number ahead of the shock
that occur as the shock moves [9]. Furthermore, it was also shown
that these changes in relative Mach number are determined by the
imposed pressure ratio across the interaction. Specifically, an
imposed rise in backpressure increases the pressure ratio across the
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shock, which causes the shock to move upstream in the parallel-
walled duct in order to increase its relative strength and satisfy the
imposed pressure ratio. The experimentally measured pressure rise
through the unsteady interaction during upstream and downstream
shock motions is plotted in Fig. 7 together with the pressure profiles
predicted by the unsteady numerical simulation at the corresponding
points in the cycle of shock motion.

Figure 7 shows reasonable agreement between the experimentally
measured pressure rises through the unsteady interaction and those
predicted by the numerical scheme. The agreement for downstream
shock motion is better than for upstream shock motion. In the latter
case, the numerical simulation overpredicts the upstream influence of
the interaction and does not capture the shape of the pressure rise
observed in experiments, especially around x� 20 mm, where a
kink is present in the pressure distribution that is not seen in
experiments.

The magnitude of the pressure rise through the unsteady
interaction is reasonably well predicted by the numerical scheme for
both upstream and downstream shockmotions. This suggests that the
simulation is correctlymodeling the downstream conditions imposed
on the shock in experiments. In light of this, the relationship between
imposed pressure ratio and shock dynamics previously proposed by
Bruce and Babinsky [9] suggests that an unsteady computational
code should be able to reproduce the shock dynamics observed in
experiments. To investigate this, the experimentally measured and

numerically predicted dynamics of forced shock motion at two
frequencies are analyzed in Figs. 8 and 9. The amplitude of shock
oscillation (plotted in Fig. 8c and discussed subsequently in this
paper) is defined as the difference between the most upstream and
downstream shock positions observed at midheight in the tunnel
(y� 89 mm) in the plots of average shock position obtained for each
test case.

Figure 8a shows that both the amplitude and peak acceleration of
shockmotion vary considerably with shock-oscillation frequency. In
contrast, variations in shock velocity are small, with the exception of
the high-frequency (70 and 90 Hz) test cases, where some notable
“wiggles” in velocity begin to appear near the start of the cycle
(0 � t=T � 0:3). Figure 8c shows that the numerically predicted
values of shock-oscillation amplitude closely match those from
experiments and are in agreement with the experimentally observed
trend of decreasing oscillation amplitude with increasing frequency.

Figure 9a shows good agreement between the experimentally
measured and numerically predicted shock velocity profiles for a
shock-oscillation frequency of around 40Hz, although the numerical
scheme slightly overpredicts peak shock velocities. In contrast, the
agreement for the 90 Hz test case (Fig. 9b) is significantly worse.
Here, the numerical scheme overpredicts the peak downstream
(positive) shock velocity observed in experiments by around 50%
and does not replicate the experimentally observed shape of the
velocity profile. It should be noted, however, that the numerically
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Fig. 6 Schlieren images of the unsteady SBLI;M1 � 1:4 and frequency is 43 Hz. The white arrows on the images indicate the direction (or a change in

direction) of shock motion.
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predicted velocity data for the 90Hz test case appear to be quite noisy
and so no firm conclusions should be drawn.

Figures 8 and 9 show that the numerical scheme used in this study
is generally capable of replicating the experimentally measured
dynamics of shock motion in response to an imposed downstream
pressure variation, although some discrepancies seem to exist as
frequency is increased. It is possible that the success of the numerical
scheme in this area stems from the fact that the main aspects of shock
motion are governed by inviscid effects (almost one-dimensional
upstream-traveling pressure waves), which are relatively well
understood and captured by the numerical URANS code. Thus, the
success of the numerical scheme in capturing the viscous nature of
the unsteady SBLI is yet to be been determined. To address this
unanswered question, the (numerically predicted and experimentally
measured) viscous SBLI structure during forced unsteady shock
motion is examined next.

C. Changing Viscous Interaction Structure of an Unsteady SBLI

Schlieren images from experiments showing the four points A–D
in individual shock oscillations at three different forcing frequencies
are shown in Fig. 10.

The images in Fig. 10 show that changes to the interaction
structure due to shockmotion are relatively subtle for each individual
test case (compare images A, B, C, andD) and also between different
frequency test cases (compare images at 23, 43, and 90 Hz). The
interaction size increases slightly when the shock is downstream
(image A) and the leading leg of the � shock-foot structure appears
morewell-defined during upstream shockmotion (image B) than it is
during downstream shock motion (D). This difference in appearance
can be explained by changes in the strength of the leading leg of the�
shock structure as the relative Mach number of the incoming flow
varies as the shock moves. Specifically, as the shock moves
upstream, the relative Mach number increases and the leading leg
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gets stronger to accommodate the increased pressure jump through
the shock. The measured pressure profiles in Fig. 7 show that the
initial pressure rise through the unsteady interaction is steeper when
the shock moves upstream, which supports the idea that the leading
leg of the � shock structure should be stronger.

The images in Fig. 10 also show that a number of well-defined but
relatively weak secondary shock waves or wavelets can be seen
downstream of the main shock wave. Careful analysis of high-speed
video frames reveals that these wavelets propagate upstream toward
the shock wave. It is thought that they are formed when the
compressive pressurewaves produced by the elliptical shaft coalesce
as they propagate slowly upstream in the high-subsonic Mach
number postshock flow to become weak upstream-traveling shock
waves (or wavelets). The pattern of these wavelets varies during the
cycle of shock motion but is similar at different frequencies.
Figure 11 shows equivalent numerical schlieren plots of the unsteady
SBLI during upstream and downstream shock motions.

Figure 11 shows that the numerical scheme generally predicts
interaction sizes that are much greater than those observed in

experiments, in agreementwith the trend observed for the steady case
(Fig. 5). It can also be seen in Fig. 11 that the numerical scheme
predicts a much greater variation in interaction size between
upstream and downstream shock motions than is observed in
experiments. It is not clear from Fig. 11b whether the leading leg of
the� shock-foot structure in the numerical solutionvaries in intensity
during upstream and downstream motion, as was observed to be the
case in experiments. However, it is interesting to note that the
numerically predicted pressure profiles in Fig. 7 show that the initial
pressure rise in both cases are rather similar, more so than in
experiments.

To quantitatively investigate the observed variation in experi-
mentally measured and numerically predicted interaction size, the
position of the triple point (at the top of the� shock foot, as annotated
in Fig. 11) has been tracked during unsteady shock motion. The
results from this are presented in Fig. 12.

Figure 12a confirms that the triple-point height (which is a
measure of the interaction size) predicted by the numerical scheme is,
on average, larger than in experiments by around 40%. In addition, a
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Fig. 10 Schlieren images from experiments at different frequencies with M1 � 1:4: a) fshock � 23 Hz, b) fshock � 43 Hz, and c) fshock � 90 Hz.
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number of other discrepancies between experimental and numerical
results exist. Parameters that highlight these differences are
summarized in Table 2. First, the variation in triple-point height due
to shock motion is overpredicted (10–15 mm difference between
upstream/downstream shock motion compared with 2–3 mm
difference in experiments). Second, the numerical scheme predicts
that the triple point should be larger during upstream shock motion
than during downstream shockmotion, whereas the opposite trend is
observed in experiments. Interestingly, these two discrepancies lead
to the numerical scheme predicting that the maximum interaction
size should occur during upstream shock motion, whereas experi-
ments suggest that themaximum occurs when the shock is in its most
downstream (positive) position and is stationary.

Figure 12 shows that a hysteresis in triple-point height between
upstream and downstream shock motions occurs in both the
numerical simulation and the experiment. Both curves show a trend
for the triple-point height to increase with downstream position by
around 30%of its value at itsmost upstream position (Fig. 12b shows
this most clearly for the experimental results). This increase is
attributed in part to the natural streamwise growth of the tunnel-floor
boundary layer that would occur over the streamwise distance of
shock motion (�60 mm) even if the shock wave was not present.
However, measurements of the tunnel-floor boundary layer in the
working section (when there is not a shock wave and the flow is
supersonic) have shown that the boundary layer grows at an
approximately linear rate of 0.8 mm per 100 mm streamwise
distance, which would correspond to an increase in � of less than
0.5 mm (around 10%) over a 60 mm streamwise distance. It is
reasonable to assume that this would cause an increase in triple-point
height of around 10%, which is significantly lower than the 30%
difference observed in experiments. Hence, it is likely that there are
other contributory factors that cause the triple-point height to
increase with downstream shock position.

Figure 12a also suggests that there is a small difference in the
experimentally measured and numerically predicted amplitudes of
shock oscillation, which is in apparent disagreement with Fig. 8c.
However, this difference is thought to be caused by slight differences

in the amount of (wall-normal) shock curvature that occur at different
phases of the unsteady shock’s motion (i.e., the position of the shock
at the tunnel centerline varies slightly relative to the streamwise
position of the triple point). Hence, it may be possible that the
numerical scheme predicts the correct amplitude of shock motion at
the tunnel centerline and not at the location of the triple point.
Another possibility is that the large change in height of the triple
point seen in numerical results has an effect on its streamwise
position (as the shock is slightly inclined and also curved close to
the floor).

In summary, the parameters in Table 2 suggest that the numerical
scheme does not fully capture the dominantmechanisms (whichmay
be viscous) that are responsible for the changes in interaction
structure observed in experiments. In particular, the different
interaction size during upstream and downstream shock motions
seen in experiments and in the numerically predicted flow is an area
of significant disagreement. Previous studies have shown that the
interaction size, and hence triple-point height, of a steady transonic
SBLI should increase as the Mach number ahead of the shock is
increased [17]. This trend is illustrated by the data plotted in Fig. 13,
which are taken from steady tests at a range of Mach and Reynolds
numbers.

Experimental and numerical results from the present study have
been plotted in Fig. 13b. These data points correspond to the steady
interaction and also the points during unsteady upstream and
downstream shockmotions when the shock is at x� 0 mm (points B
and D in previous figures). These data points have been chosen to
attempt to isolate the effects of shock motion. For the unsteady test
cases, the measured triple-point height (normalized by the incoming
boundary-layer thickness) is plotted against the relative Mach
number ahead of the shock wave, calculated using the measured
shock velocities in Fig. 9.

The difference between the steady experimental and numerical
data points from the present study in Fig. 13b emphasizes the fact that
the numerical scheme overpredicts steady interaction size, whereas
(encouragingly) the experimental result from the present study
shows excellent agreement with the experimental data of Doerffer
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Table 2 Comparison of unsteady interaction parameters from experiment
and numerical simulation

Parameter Experiment Simulation

Frequency, Hz 43 40
Oscillation amplitude at tunnel centerline, mm 48 62
Oscillation amplitude at triple point, mm 60 54
Mean triple-point height, mm 22 31
Minimum/maximum triple-point height, mm 19/26 24/38
Variation in triple-point height due to motion, mm 2–3 10–15
Triple point higher during. . . Downstream motion Upstream motion
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[17]. However, data points from unsteady experiments do not lie on
the trend line and do, in fact, show a correlation in the opposite sense
(i.e., interaction size decreases with increasing relative shock
strength). In contrast, the unsteady numerical results in Fig. 13b show
the same trend as the steady experimental data from Doerffer (i.e.,
increasing interaction size with increasing shock strength), albeit
with a slightly greater gradient. This suggests that the changes in
interaction structure predicted by the numerical scheme are primarily
related to variations in relative shock strength and these changes
would be more-or-less correct if the interaction behaved in a truly
quasi-steady manner (although the larger gradient observed for the
numerical resultswould suggest that the sensitivity of interaction size
to shock strength is being overpredicted).

However, this explanation is contradicted by the results from
unsteady experiments, which suggest that the unsteady transonic
SBLI does not behave quasi-steadily, and that other factors that affect
the interaction sizemust also be important. In addition to the results at
points B and D from unsteady experiments that are plotted in
Fig. 13b, the unsteady SBLI structure also exhibits what could be
referred to as non-quasi-steady behavior at points A and C in its

cycle. In these cases (where the shock wave is momentarily
stationary at the extreme positions of its motion) even though the
relative Mach number of the shock is the same (and equal to the
freestream value of 1.4), the ratio of interaction size to boundary-
layer thickness is not constant, which would be the expected result if
the flow behavior was truly quasi-steady.

Experimentally measured and numerically predicted Mach
number contours at the tunnel centerline during upstream and down-
stream shock motions are plotted in Fig. 14.

Figure 14 emphasizes the fact that the numerical scheme
overpredicts interaction size and the magnitude of changes in
interaction size due to shock motion. However, the velocity contours
in Fig. 14 also show some similarities between the unsteady SBLI
observed in experiments and predicted by the numerical simulation.
First, the Mach number downstream of the SBLI is lower when the
shock is traveling upstream, and second, boundary-layer growth
through the interaction is larger during upstream than downstream
shock motion. This suggests that even though the boundary layer
appears to feel and respond to the variations in adverse pressure
gradient that occur in experiments (due to shock motion), the size of
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the � shock foot does not match the quasi-steady expectation (that it
should get larger as the shock moves upstream and smaller when the
shock moves downstream).

As discussed previously, the viscous timescales of the flow are
much shorter than the period of shock motion (Stviscous 	 1). In
contrast, the acoustic timescales of the flow are much closer to the
period of shock motion (Stinviscid � 1). Based on this, it can be
speculated that the non-quasi-steady variation of SBLI sizemay stem
from the existence of some sort of phase lag between the arrival time
of downstream pressure information in inviscid regions of the flow
(such as downstream of the main shock and behind the � shock
structure) and in viscous regions (such as the floor and sidewall
boundary layers and any corner flows). To explore this possible
mechanism, further research in this area is required, ideally including
both further detailed experiments and the development of improved
numerical methods for simulating aspects of unsteady transonic
flows.

IV. Conclusions

Experimental and computational studies of aM1 � 1:4 transonic
shock/boundary-layer interaction (SBLI) in a duct with parallel walls
with and without downstream pressure perturbations have been
performed. In the absence of pressure perturbations (steady test
case), it is found that the numerical method overestimates interaction
size but is otherwise largely successful in predicting most features of
the SBLI. When low-frequency (40 Hz) downstream pressure
perturbations are introduced, the numerical scheme predicts realistic
shock motion but fails to replicate the subtle changes in the viscous
SBLI structure that are observed in experiments. The changes due to
shock motion predicted by the numerical scheme are consistent with
what would be expected if the unsteady flow could be treated as
quasi-steady (specifically, that the interaction structure should be
determined solely by the relative shock strength, which varies due to
shock motion). However, the variations in the size of the SBLI
structure observed in unsteady experiments suggest that this is not
the case and that the interaction is, in fact, influenced by more
complex effects. It is speculated that some sort of phase lagmay exist
between the behavior of the� shock structure and the boundary layer,
due to the different inviscid and viscous timescales present in the
flow.

At higher frequencies (90 Hz), the numerical scheme fails to
replicate aspects of the experimentally observed shock dynamics
(whichwere different from those at low frequency). This supports the
theory that the numerical method used in the present study did not
completely capture all of the relevant unsteady flow physics for the
unsteady SBLI observed in experiments (which in itself cannot yet
necessarily be explained). Further work developing numerical
methods that accuratelymodel the sensitivity of the SBLI structure to
shock motion at a range of frequencies is desirable. Improvements in
this area are likely to result in improvements tomethods formodeling
SBLIs with and without artificial unsteadiness (as all SBLIs are
known to exhibit some unsteady behavior). Further experimental
work examining the dynamics of shock behavior at frequencies
above 90 Hz would also be beneficial for increasing our under-
standing of the unsteady (possibly viscous) mechanisms at work.
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