52 research outputs found

    Molecular and Structural Parallels between Gluten Pathogenic Peptides and Bacterial-Derived Proteins by Bioinformatics Analysis

    Get PDF
    Gluten-related disorders (GRDs) are a group of diseases that involve the activation of the immune system triggered by the ingestion of gluten, with a worldwide prevalence of 5%. Among them, Celiac disease (CeD) is a T-cell-mediated autoimmune disease causing a plethora of symptoms from diarrhea and malabsorption to lymphoma. Even though GRDs have been intensively studied, the environmental triggers promoting the diverse reactions to gluten proteins in susceptible individ-uals remain elusive. It has been proposed that pathogens could act as disease-causing environmental triggers of CeD by molecular mimicry mechanisms. Additionally, it could also be possible that unrecognized molecular, structural, and physical parallels between gluten and pathogens have a relevant role. Herein, we report sequence, structural and physical similarities of the two most relevant gluten peptides, the 33-mer and p31-43 gliadin peptides, with bacterial pathogens using bioinformatics going beyond the molecular mimicry hypothesis. First, a stringent BLASTp search using the two gliadin peptides identified high sequence similarity regions within pathogen-derived proteins, e.g., extracellular proteins from Streptococcus pneumoniae and Granulicatella sp. Second, molecular dynamics calculations of an updated α-2-gliadin model revealed close spatial localization and solvent-exposure of the 33-mer and p31-43 peptide, which was compared with the pathogen-related proteins by homology models and localization predictors. We found putative functions of the identified pathogen-derived sequence by identifying T-cell epitopes and SH3/WW-binding domains. Finally, shape and size parallels between the pathogens and the superstructures of gliadin peptides gave rise to novel hypotheses about activation of innate immunity and dysbiosis. Based on our structural findings and the similarities with the bacterial pathogens, evidence emerges that these pathologically relevant gluten-derived peptides could behave as non-replicating pathogens opening new research questions in the interface of innate immunity, microbiome, and food research.Fil: Vazquez, Diego Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Schilbert, Hanna M.. Universitat Bielefeld; AlemaniaFil: Dodero, Veronica Isabel. Universitat Bielefeld; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Sequence-specific DNA binding by noncovalent peptide–azocyclodextrin dimer complex as a suitable model for conformational fuzziness

    Get PDF
    Transcription factors are proteins lying at the endpoint of signaling pathways that control the complex process of DNA transcription. Typically, they are structurally disordered in the inactive state, but in response to an external stimulus, like a suitable ligand, they change their conformation, thereby activating DNA transcription in a spatiotemporal fashion. The observed disorder or fuzziness is functionally beneficial because it can add adaptability, versatility, and reversibility to the interaction. In this context, mimetics of the basic region of the GCN4 transcription factor (Tf) and their interaction with dsDNA sequences would be suitable models to explore the concept of conformational fuzziness experimentally. Herein, we present the first example of a system that mimics the DNA sequence-specific recognition by the GCN4 Tf through the formation of a non- covalent tetra-component complex: peptide–azoβ-CyD(dimer)–peptide–DNA. The non-covalent complex is constructed on the one hand by a 30 amino acid peptide corresponding to the basic region of GCN4 and functionalized with an adamantane moiety, and on the other hand an allosteric receptor, the azoCyDdimer, that has an azobenzene linker connecting two β-cyclodextrin units. The azoCyDdimer responds to light stimulus, existing as two photo-states: the first thermodynamically stable with an E:Z isomer ratio of 95:5 and the second obtained after irradiation with ultraviolet light, resulting in a photostationary state with a 60:40 E:Z ratio. Through electrophoretic shift assays and circular dichroism spectroscopy, we demonstrate that the E isomer is responsible for dimerization and recognition. The formation of the non-covalent tetra component complex occurs in the presence of the GCN4 cognate dsDNA sequence (′5-..ATGA cg TCAT..-3′) but not with (′5-..ATGA c TCAT..-3′) that differs in only one spacing nucleotide. Thus, we demonstrated that the tetra-component complex is formed in a specific manner that depends on the geometry of the ligand, the peptide length, and the ds DNA sequence. We hypothesized that the mechanism of interaction is sequential, and it can be described by the polymorphism model of static fuzziness. We argue that chemically modified peptides of the GCN4 Tf are suitable minimalist experimental models to investigate conformational fuzziness in protein–DNA interactions.Fil: Quirolo, Zulma Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Sequeira, María Alejandra. Universidad Nacional del Sur; ArgentinaFil: Martins, José C.. University of Ghent; BélgicaFil: Dodero, Veronica Isabel. Universitat Bielefeld; Alemania. Universidad Nacional del Sur. Departamento de Química; Argentin

    Photocontrolled DNA minor groove interactions of imidazole/pyrrole polyamides

    Get PDF
    Müller S, Paulus J, Mattay J, Ihmels H, Dodero VI, Sewald N. Photocontrolled DNA minor groove interactions of imidazole/pyrrole polyamides. Beilstein Journal of Organic Chemistry. 2020;16:60-70.Azobenzenes are photoswitchable molecules capable of generating significant structural changes upon E-to-Z photoisomerization in peptides or small molecules, thereby controlling geometry and functionality. E-to-Z photoisomerization usually is achieved upon irradiation at 350 nm (pi-pi* transition), while the Z-to-E isomerization proceeds photochemically upon irradiation at >400 nm (n-pi* transition) or thermally. Photoswitchable compounds have frequently been employed as modules, e.g., to control protein-DNA interactions. However, their use in conjunction with minor groove-binding imidazole/pyrrole (Im/Py) polyamides is yet unprecedented. Dervan-type Im/Py polyamides were equipped with an azobenzene unit, i.e., 3-(3-(aminomethyl)phenyl)azophenylacetic acid, as the linker between two Im/Py polyamide strands. Only the (Z)-azobenzene-containing polyamides bound to the minor groove of double-stranded DNA hairpins. Photoisomerization was exemplarily evaluated by H-1 NMR experiments, while minor groove binding of the (Z)-azobenzene derivatives was proven by CD titration experiments. The resulting induced circular dichroism (ICD) bands of the bound ligands, together with the photometric determination of the dsDNA melting temperature, revealed a significant stabilization of the DNA upon association with the ligand. The (Z)-azobenzene acted as a building block inducing a reverse turn, which favored hydrogen bonds between the pyrrole/imidazole amide and the DNA bases. In contrast, the E-configured polyamides did not induce any ICD characteristic for minor groove binding. The incorporation of the photoswitchable azobenzene unit is a promising strategy to obtain photoswitchable Im/Py hairpin polyamides capable of interacting with the dsDNA minor groove only in the Z-configuration

    Stimuli-responsive selection of target DNA sequences by synthetic bZIP peptides

    Get PDF
    One of the strategies used by nature to regulate gene expression relies on the stimuli controlled combination of DNA-binding proteins. This in turn determines the target-binding site within the genome, and thereby whether a particular gene is activated or repressed. Here we demonstrate how a designed basic region leucine zipper-based peptide can be directed towards two different DNA sequences depending on its dimerization arrangement. While themonomeric peptide is non-functional, a C-terminal metallo-dimer recognizes the natural ATF/CREB-binding site (5'-ATGA cg TCAT-3'), and a N-terminal disulphide dimer binds preferentially to the swapped sequence (5-TCATcg ATGA-30'). As the dimerization mode can be efficiently controlled by appropriate external reagents, it is possible to reversibly drive the peptide to either DNA site in response to such specific inputs. This represents the firstexample of a designed molecule that can bind to more than one specific DNA sequence depending on changes in its environment.Fil: Mosquera, Jesus. Universidad de Santiago de Compostela. Facultad de Quimica. Departamento de Quimica Organica; EspañaFil: Jimenez Balsa, Adrian. Universidad de Santiago de Compostela. Facultad de Quimica. Departamento de Quimica Organica; EspañaFil: Dodero, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Química del Sur; Argentina. Universidad de Santiago de Compostela; EspañaFil: Vázquez, M. Eugenio . Universidad de Santiago de Compostela. Facultad de Quimica. Departamento de Quimica Organica; EspañaFil: Mascareñas, José L. . Universidad de Santiago de Compostela. Facultad de Quimica. Departamento de Quimica Organica; Españ

    Translational chemistry meets gluten-related disorders

    Get PDF
    Lammers KM, Herrera MG, Dodero VI. Translational chemistry meets gluten-related disorders. ChemistryOpen. 2018;7(3):217-232.Gluten‐related disorders are a complex group of diseases that involve the activation of the immune system triggered by the ingestion of gluten. Among these, celiac disease, with a prevalence of 1 %, is the most investigated, but recently, a new pathology, named nonceliac gluten sensitivity, was reported with a general prevalence of 7 %. Finally, there other less‐prevalent gluten‐related diseases such as wheat allergy, gluten ataxia, and dermatitis herpetiformis (with an overall prevalence of less than 0.1 %). As mentioned, the common molecular trigger is gluten, a complex mixture of storage proteins present in wheat, barley, and a variety of oats that are not fully degraded by humans. The most‐studied protein related to disease is gliadin, present in wheat, which possesses in its sequence many pathological fragments. Despite a lot of effort to treat these disorders, the only effective method is a long‐life gluten‐free diet. This Review summarizes the actual knowledge of gluten‐related disorders from a translational chemistry point of view. We discuss what is currently known from the literature about the interaction of gluten with the gut and the critical host responses it evokes and, finally, connect them to our current and novel molecular understanding of the supramolecular organization of gliadin and the 33‐mer gliadin peptide fragment under physiological conditions

    Insights into gliadin supramolecular organization at digestive pH 3.0

    Get PDF
    Herrera MG, Vazquez DS, Sreij R, et al. Insights into gliadin supramolecular organization at digestive pH 3.0. COLLOIDS AND SURFACES B-BIOINTERFACES. 2018;165:363-370.Alpha-gliadin is a highly immunogenic protein from wheat, which is associated with many human diseases, like celiac disease and non-celiac gluten sensitivity. Because of that, gliadin solution is subject to intense biomedical research. However, the physicochemical nature of the employed gliadin solution at physiological pH is not understood. Herein, we present a supramolecular evaluation of the alpha-gliadin protein in water at pH 3.0 by dynamic light scattering (DLS), cryo-transmission electron microscopy (cryoTEM) and small-angle-.X-ray scattering (SAXS). We report that at 0.5 wt% concentration (0.1 mg/ml), gliadin is already a colloidal polydisperse system with an average hydrodynamic radius of 30 +/- 10 nm. By cryo-TEM, we detected mainly large clusters. However, it was possible to visualise for the first time prolate oligomers of around 68 nm and 103 nm, minor and major axis, respectively. SAXS experiments support the existence of prolate/rod-like structures. At 1.5 wt% concentration gliadin dimers, small oligomers and large clusters coexist. The radius of gyration (R-g1) of gliadin dimer is 5.72 +/- 0.23 nm with a dimer cross-section (R-c) of 1.63 nm, and an average length of around 19 nm, this suggests that gliadin dimers are formed longitudinally. Finally, our alpha-gliadin 3D model, obtained by ab initio prediction and analysed by molecular dynamics (MD), predicts that two surfaces prone to aggregation are exposed to the solvent, at the C-terminus. We hypothesise that this region may be involved in the dimerisation process of alpha-gliadin. (C) 2018 Elsevier B.V. All rights reserved

    Molecular mechanisms of 33-mer gliadin peptide oligomerisation

    Get PDF
    The proteolytic resistant 33-mer gliadin peptide is an immunodominant fragment in gluten and responsible for the celiac disease and other gluten-related disorders. Meanwhile, the primary structure of the 33-mer is associated with the adaptive immune response in celiac patients, and the structural transformation of the 33-mer into protofilaments activates a primordial innate immune response in human macrophages. This means that accumulation, oligomerisation and structural transformation of the 33-mer could be the unknown first event that triggers the disease. Herein, we reveal the early stepwise mechanism of 33-mer oligomerisation by combining multiple computational simulations, tyrosine cross-linking, fluorescence spectroscopy and circular dichroism experiments. Our theoretical findings demonstrated that the partial charge distribution along the 33-mer molecule and the presence of glutamine that favours H-bonds between the oligomers are the driving forces that trigger oligomerisation. The high content of proline is critical for the formation of the flexible PPII secondary structure that led to a β structure transition upon oligomerisation. Experimentally, we stabilised the 33-mer small oligomers by dityrosine cross-linking, detecting from dimers to higher molecular weight oligomers, which confirmed our simulations. The relevance of 33-mer oligomers as a trigger of the disease as well as its inhibition may be a novel therapeutic strategy for the treatment of gluten-related disorders.Fil: Amundarain, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Herrera, Maria Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Universitat Bielefeld; AlemaniaFil: Zamarreño, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Viso, Juan Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Costabel, Marcelo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Dodero, Veronica Isabel. Universitat Bielefeld; Alemani

    Insights into gliadin supramolecular organization at digestive pH 3.0

    Get PDF
    Alpha-gliadin is a highly immunogenic protein from wheat, which is associated with many human diseases, like celiac disease and non-celiac gluten sensitivity. Because of that, gliadin solution is subject to intense biomedical research. However, the physicochemical nature of the employed gliadin solution at physiological pH is not understood. Herein, we present a supramolecular evaluation of the alpha-gliadin protein in water at pH 3.0 by dynamic light scattering (DLS), cryo-transmission electron microscopy (cryo-TEM) and small-angle-.X-ray scattering (SAXS). We report that at 0.5 wt% concentration (0.1 mg/ml), gliadin is already a colloidal polydisperse system with an average hydrodynamic radius of 30 ± 10 nm. By cryo-TEM, we detected mainly large clusters. However, it was possible to visualise for the first time prolate oligomers of around 68 nm and 103 nm, minor and major axis, respectively. SAXS experiments support the existence of prolate/rod-like structures. At 1.5 wt% concentration gliadin dimers, small oligomers and large clusters coexist. The radius of gyration (Rg1) of gliadin dimer is 5.72 ± 0.23 nm with a dimer cross-section (Rc) of 1.63 nm, and an average length of around 19 nm, this suggests that gliadin dimers are formed longitudinally. Finally, our alpha-gliadin 3D model, obtained by ab initio prediction and analysed by molecular dynamics (MD), predicts that two surfaces prone to aggregation are exposed to the solvent, at the C-terminus. We hypothesise that this region may be involved in the dimerisation process of alpha-gliadin.Fil: Herrera, Maria Georgina. Universitat Bielefeld; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vazquez, Diego Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Sreij, R.. Universitat Bielefeld; AlemaniaFil: Drechsler, M.. University of Bayreuth; AlemaniaFil: Hertle, Y.. Universitat Bielefeld; AlemaniaFil: Hellweg, T.. Universitat Bielefeld; AlemaniaFil: Dodero, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universitat Bielefeld; Alemani

    Sequence-Specific DNA Binding by Noncovalent Peptide–Azocyclodextrin Dimer Complex as a Suitable Model for Conformational Fuzziness

    Get PDF
    Quirolo ZB, Sequeira MA, Martins JC, Dodero VI. Sequence-Specific DNA Binding by Noncovalent Peptide–Azocyclodextrin Dimer Complex as a Suitable Model for Conformational Fuzziness. Molecules. 2019;24(13): 2508.Transcription factors are proteins lying at the endpoint of signaling pathways that control the complex process of DNA transcription. Typically, they are structurally disordered in the inactive state, but in response to an external stimulus, like a suitable ligand, they change their conformation, thereby activating DNA transcription in a spatiotemporal fashion. The observed disorder or fuzziness is functionally beneficial because it can add adaptability, versatility, and reversibility to the interaction. In this context, mimetics of the basic region of the GCN4 transcription factor (Tf) and their interaction with dsDNA sequences would be suitable models to explore the concept of conformational fuzziness experimentally. Herein, we present the first example of a system that mimics the DNA sequence-specific recognition by the GCN4 Tf through the formation of a non- covalent tetra-component complex: peptide–azoβ-CyD(dimer)–peptide–DNA. The non-covalent complex is constructed on the one hand by a 30 amino acid peptide corresponding to the basic region of GCN4 and functionalized with an adamantane moiety, and on the other hand an allosteric receptor, the azoCyDdimer, that has an azobenzene linker connecting two β-cyclodextrin units. The azoCyDdimer responds to light stimulus, existing as two photo-states: the first thermodynamically stable with an E:Z isomer ratio of 95:5 and the second obtained after irradiation with ultraviolet light, resulting in a photostationary state with a 60:40 E:Z ratio. Through electrophoretic shift assays and circular dichroism spectroscopy, we demonstrate that the E isomer is responsible for dimerization and recognition. The formation of the non-covalent tetra component complex occurs in the presence of the GCN4 cognate dsDNA sequence (′5-..ATGA cg TCAT..-3′) but not with (′5-..ATGA c TCAT..-3′) that differs in only one spacing nucleotide. Thus, we demonstrated that the tetra-component complex is formed in a specific manner that depends on the geometry of the ligand, the peptide length, and the ds DNA sequence. We hypothesized that the mechanism of interaction is sequential, and it can be described by the polymorphism model of static fuzziness. We argue that chemically modified peptides of the GCN4 Tf are suitable minimalist experimental models to investigate conformational fuzziness in protein–DNA interactions

    From celiac disease to coccidia infection and vice-versa: the polyQ peptide CXCR3-interaction axis

    Get PDF
    Zonulin is a physiological modulator of intercellular tight junctions, which upregulation is involved in several diseases like celiac disease (CeD). The polyQ gliadin fragment binds to the CXCR3 chemokine receptor that activates zonulin upregulation, leading to increased intestinal permeability in humans. Here, we report a general hypothesis based on the structural connection between the polyQ sequence of the immunogenic CeD protein, gliadin, and enteric coccidian parasites proteins. Firstly, a novel interaction pathway between the parasites and the host is described based on the structural similarities between polyQ gliadin fragments and the parasite proteins. Secondly, a potential connection between coccidial infections as a novel environmental trigger of CeD is hypothesized. Therefore, this report represents a promising breakthrough for coccidian research and points out the potential role of coccidian parasites as a novel trigger of CeD that might define a preventive strategy for gluten-related disorders in general. Also see the video abstract here: https://youtu.be/oMaQasStcFI.Fil: Lauxmann, Martin Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Brandenburg Medical School; AlemaniaFil: Vazquez, Diego Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología - Universidad Nacional de Quilmes - GBEyB | Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología - Universidad Nacional de Quilmes - GBEyB | Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología - Universidad Nacional de Quilmes - GBEyB; ArgentinaFil: Schilbert, Hanna M.. Universitat Bielefeld; AlemaniaFil: Neubauer, Pia R.. Universitat Bielefeld; AlemaniaFil: Lammers, Karen M.. Tubascan Ltd; Países BajosFil: Dodero, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universitat Bielefeld; Alemani
    corecore