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GRAPHICAL ABSTRACT 

 

Highlights  

 

Gliadin is an immunogenic protein present in wheat gluten which is not fully degraded by humans. 

At digestive pH, gliadin solution is composed of prolate ellipsoidal dimers, and oligomers.  

A molecular understanding of oligomerization propensity is provided. 

 

 

Abstract 

 

Alpha-gliadin is a highly immunogenic protein from wheat, which is associated with many human 

diseases, like celiac disease and non-celiac gluten sensitivity. Because of that, gliadin solution is 

subject to intense biomedical research. However, the physicochemical nature of the employed 

gliadin solution at physiological pH is not understood. Herein, we present a supramolecular 

evaluation of the alpha-gliadin protein in water at pH 3.0 by dynamic light scattering (DLS), cryo-

transmission electron microscopy (cryo-TEM) and small-angle-.X-ray scattering (SAXS). We 

report that at 0.5 wt % concentration (0.1 mg/ml), gliadin is already a colloidal polydisperse system 

with an average hydrodynamic radius of 30 ± 10 nm. By cryo-TEM, we detected mainly large 

clusters. However, it was possible to visualise for the first time prolate oligomers of around 68 nm 

and 103 nm, minor and major axis, respectively. SAXS experiments support the existence of 

prolate/ rod-like structures. At 1.5 wt % concentration gliadin dimers, small oligomers and large 

clusters coexist. The radius of gyration (Rg1) of gliadin dimer is 5.72 ±0.23 nm with a dimer cross-
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section (Rc) of 1.63 nm, and an average length of around 19 nm, this suggests that gliadin dimers 

are formed longitudinally. Finally, our alpha-gliadin 3D model, obtained by ab initio prediction and 

analysed by molecular dynamics (MD), predicts that two surfaces prone to aggregation are 

exposed to the solvent, at the C-terminus. We hypothesise that this region may be involved in the 

dimerisation process of alpha-gliadin.  
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Introduction 

Gliadin is an immunogenic protein present in wheat gluten which is not entirely degraded by 

humans. It is composed of different isoforms which are classified as α, β, ω, ϒ depending on their 

electrophoretic mobility [1]. Even though the whole gliadin system exhibits low solubility in water, 

it can be solubilised using different salts and alcohols [2,3]. Moreover, it has been demonstrated 

that alpha-gliadin and its partially degraded fragments trigger an adaptive and innate immune 

response in some individuals which causes the development of celiac disease and non-celiac 

gluten sensibility [4,5]. These disorders are highly prevalent in the population, affected 1 % and 7 

%, respectively. Up to now, the physicochemical understanding of gliadin under physiological 

conditions is limited. Nevertheless, biomedical studies confirmed their pathogenic role [6]. When 

food is ingested, it is retained for 120 minutes in the stomach, where the pH can be as low as a 

1, but then a buffering effect is induced, leading to pH values in the range of 2.0 to 6.0 [7]. In the 

case of commercial gliadin, the buffering effect occurs at pH 3.0 when it is dissolved in 0.001 M 

HCl. Also, mainly the alpha isoform remains in the aqueous phase [8]. Under dilute concentration, 

gliadin is self-organised forming micelle-type aggregates as characterised by spectroscopic 

methods and conventional electron microscopy [8]. This study aims to get a better insight into 

gliadin supramolecular organisation in dilute aqueous solution at pH 3.0 and 10 mM NaCl using 

dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM) and small 

angle X-ray scattering (SAXS) experiments. Our findings reveal that gliadin under the mentioned 

conditions is highly polydisperse, composed of prolate ellipsoidal dimers, and oligomers of 

different sizes. Finally, taking into consideration that the gliadin structure has not been elucidated 

yet, we perform an ab initio modelling of alpha-gliadin and a classical molecular dynamics (MD) 

simulation to provide insights into the 3D structure of alpha-gliadin and its oligomerisation 

capability.  
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Materials and Methods 

Sample preparation 

Gliadin stock solution was obtained and characterised as described before [8]. Briefly, 10 mg of 

gliadin (Sigma Aldrich) was dissolved in 10 ml of HCl 0.001 M and NaCl 10 mM obtaining a final 

pH of 3.0. Gliadin solution was homogenised at room temperature, stabilised for 12 hours at 10°C 

and centrifuged at 21130 g for 15 min; the supernatant was taken as the working solution. The 

composition of the supernatant was mainly alpha gliadin and a minor proportion of the beta 

isoform. The supernatant has a final concentration of 0.5 wt% as determined by a Bradford assay. 

For SAXS experiments, the final concentration of 1.5 wt % was reached using a centrifugal filter 

with a 30.000 Da cut off (Amicon Ultra, Millipore). 

 

Dynamic light scattering (DLS) 

DLS experiments were carried out using a 3DLS spectrometer (LS Instruments, Fribourg, 

Switzerland). The light source was a He-Ne laser of 632.8 nm with a constant output power of 30 

mW. The scattering experiments were performed with an angular range of 40° > θ > 110°. 

Samples were kept in the thermostated goniometer of the DLS instrument at 25 °C between 15 

to 20 minutes to reach thermal equilibrium. The measured intensity time autocorrelation functions 

were converted to the respective field correlation functions and analysed using the CONTIN 

software of S. Provencher [9]. The outcome is an intensity weighted relaxation rate distribution 

which can be converted into a distribution of the corresponding apparent diffusion coefficients 

Dapp of the present structures. By the Stokes-Einstein equation (Rh=kBT/6πηDapp), the radii of 

hydrodynamically equivalent spheres (Rh) are calculated. Here, kB is the Boltzmann constant, T 

the temperature and η the solvent viscosity. Gliadin working solution was filtered through 0.2 µm 

syringe filter (Millex, low protein binding membrane) before DLS measurements. 

 

Cryo-transmission electron microscopy (Cryo-TEM) 

Gliadin solution was deposited on lacey carbon filmed copper grids by blotting with a filter paper. 

The resulting thin film was vitrified by quickly plunging the grids into liquid ethane at its freezing 
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point. Specimens were examined at a temperature around 90 K with a Zeiss/LEO EM922 Omega 

TEM (Zeiss SMT, Oberkochen, Germany). Images were recorded by a CCD digital camera 

(Ultrascan 1000, Gatan) and analysed using the GMS 1.8 software (Gatan). The size distribution 

was obtained using Image J [10].  

 

Small angle X-ray scattering (SAXS) 

SAXS of gliadin was performed on a Xeuss SAXS/WAXS System (Xenocs, Sassenage, France). 

The X-ray source consists of a 30 W CuKα (λ=1.54 Å) microfocus tube with an ultra-low divergence 

mirror optics (GeniX, Sassenage, France) and a Pilatus 300K, 20 Hz hybrid pixel detector 

(DECTRIS, Baden-Deatwil, Switzerland). The scattering curves were normalised by the 

integrated intensity incident on the sample, exposure time, sample thickness, transmission and 

background. The focus of the sample was 1 mm². The samples were measured in a 1 mm flow-

through Kapton capillary (Goodfellow GmbH, Bad Nauheim, Germany) placed in a Linkam stage 

(Linkam Scientific, Tadworth, UK) at 10 °C. The sample-to-detector distance was for SAXS 2772 

mm, calibrated with silver behenate. The range of the scattering vector  was around 

q=0.7 - 0.13 nm-1 at a scattering angle of 2θ. The absolute calibration of the scattering data was 

done with glassy carbon type 2 [11]. The scattered intensity I(q)=N∙I(0)∙(Δρ)2∙V2∙P(q) ∙S(q) is 

dependent on: the incident intensity I(0), the scattering volume of the colloid V, the electron 

density difference Δρ between particle and solvent and the particle form factor P(q). The particle 

structure factor S(q) equals to one for dilute systems.  

 

Prediction of alpha-gliadin structure and classical molecular dynamics simulation (MD) 

The alpha-gliadin sequence Q9M4L6 from the UniProt database was selected for the 

bioinformatics and molecular dynamics (MD) analysis. For the ab initio model of alpha-gliadin, the 

I-TASSER online server was employed to get the best structure prediction [12]. The structure with 

the best energy-score was then subjected to classical MD simulation. The initial coordinates were 

solvated with 15363 molecules of the 3-particle TIP3P water model [13] in a 10 Å cubic box (7.7 
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x 8.2 x 7.5 nm dimension). In our model, the protonation state of each residue was set to the 

corresponding state at neutral pH. One chloride ion was added to neutralise the net charge of the 

system. A minimisation was applied to the resulting structure to remove any clashes for 1000 

steps of steepest descent followed by 2000 steps of conjugate gradient minimisation procedure 

using constant volume periodic boundary conditions. The system was subsequently heated from 

10 K to 300 K, using the Berendsen thermostat [14] to suppress fluctuations of the kinetic energy 

of the system with a relaxation constant of 2 ps. Subsequently, the system was switched to 

constant isotropic pressure for allowing the density to equilibrate. The SHAKE algorithm [15] was 

applied to all bonds involving hydrogen atoms; then a 2 fs time step was settled. An 8 Å cutoff 

radius for range-limited interactions with the particle mesh Ewald summation for long-range 

electrostatic interactions was used. Harmonic positional restraints of the strength of 20 kcal mol-1 

Å-2 on Cα atoms were applied during minimisation and equilibration. These restraints were 

removed in successive simulation stages (15, 10, 5, 2 and 0 kcal mol-1 Å-2) of 5 ns each. 

Production unrestrained MD simulation was performed for 500 ns with the Amber14 suite using 

the pmemd.CUDA engine for the GPU code [16] and the ff14SB force field [17]. Post-processing 

analysis was done using the cpptraj routine of AmberTools15 [18]. Protein representations were 

prepared in VMD 1.9.2 [19]. 

 

Bioinformatics prediction of gliadin hydrophobicity, intrinsic disorder regions and 

aggregation tendency. 

Q9M4L6 sequence from UniProt database was analysed using the IUPred server to predict its 

intrinsical disorder [20]. For that, the long prediction scale type was selected. The hydrophobicity 

of the protein was studied using the Kyte-Doolittle scale [21] from ProtScale of the ExPasy server 

[22]. Finally, the aggregation propensity of this protein was assessed and compared using the 

following servers: Tango and AGGRESCAN [23-25]. 
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Results and Discussion 

DLS and cryo-TEM evaluation of gliadin oligomers 

In the present work, we use non-invasive methods such as DLS and cryo-TEM experiments to 

characterise gliadin supramolecular structures. DLS experiments reveal a broad distribution of 

hydrodynamic radii (Rh) in the gliadin solution, indicating the presence of different oligomeric 

species in solution. The multiple species are probably generated by the dynamic interactions of 

gliadin monomer and oligomers (Fig. 1A). The majority of the particles have a Rh of 30 ± 10 nm, 

which was in agreement with the isolated oligomers that we previously observed by TEM [8]. 

However, the hydrodynamic size distribution is asymmetric and shows a long tail. This kind of 

behaviour was previously observed in TiO2 particles which do not have a spherical shape, 

suggesting that some bigger oligomers or interacting small ones are present in solution, producing 

non-spherical aggregates [26].  

In our previous TEM and scanning electron microscopy (SEM) [8] results, we detected gliadin 

oligomers. However, these methods require drying steps and staining which could generate 

changes in the morphology and oligomerisation state of the specimen [27]. In this context, cryo-

TEM was successfully used to characterise other proteins aggregates such as α-synuclein 

oligomers [28], and amyloid β-peptide channel-like protofibrils [29,30]. In the case of alpha-gliadin, 

cryo-TEM experiments allow us to visualise gliadin oligomers in a native-like state. By this 

procedure, we mainly observed clusters of oligomers (see Fig.S1) which contained in some cases 

detectable ellipsoidal/prolate structures, as presented in Fig. 1B. The minor and major axis of the 

ellipsoidal oligomers is 68.13 ± 7.92 nm and 103.7 ± 18.9 nm, respectively. This morphology was 

previously reported by Sato et al. [31] and Thomson et al. [32], for different experimental 

conditions. However, to the best of our knowledge, such prolate structures are visualised by cryo-

TEM for the first time in the present study. It was not possible to visualise low-molecular weight 

oligomers, probably due to the high cluster formation [33]. 
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Figure 1. DLS experiment and cryo-TEM of alpha-gliadin in HCl 0.001M, 10 mM NaCl at pH 3.0. 

A) Rh distribution obtained by DLS. B) High magnification image of gliadin oligomers obtained by 

cryo-TEM (see Fig.S1). 

 

SAXS of gliadin oligomers 

Sato et al. showed that α and γ gliadins exist in aqueous media at low concentration as monomers 

whereas increasing the concentration led to the formation of oligomers as determined by SAXS 

[31]. This report was mainly focused on high concentration experiments in water and with different 

salts (the pH of the water was not mentioned). We are more interested in the early stages of 

gliadin oligomerisation at a dilute concentration at pH 3.0 because it is the concentration range 

and pH where digestion takes place. We tested the system at two different gliadin concentrations, 

0.5 and 1.5 wt%. The morphology of the oligomers present in the solution can be approximated 

by a scaling law, which yields a relation between the scattering intensity I(q) and the scattering 

vector q Eq. (1) in the low q regime of the scattering curve.  

         (1) 

Here, α is the scattering exponent indicating the morphology of the structure, i.e. for a spherical 

object α=0, for a cylinder α=1 and a disk α=2 [34]. The scattering profiles of gliadin samples with 

the concentrations of 0.5 and 1.5 wt% are shown in Fig. 2A. The thick lines represent linear fits 

with the slope -α, indicating the linear dependency between ln(I(q)) and ln(q) (see Eq. (1)). Here, 

α=1.0 at 0.5 wt% confirms a rod-like structure in the dilute system. At 1.5 wt%, the exponent was 
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found to be α=1.2, confirming the presence of mainly cylindrical particles at this concentration, 

too. The deviation from the theoretical value of 1.0 may arise either from aggregation effects of 

the oligomers or is caused by contributions in the scattering profile from an underlying structure 

factor [35]. In the following, we calculate the structural parameters of the samples by a Guinier 

analysis. Fig. 2B shows a Guinier plot with ln(I(q)) against q2  for gliadin with a concentration of 

0.5 and 1.5 wt% under the aforementioned experimental conditions. Due to the complexity of the 

system, the scattering profiles could not be fitted with a simple Guinier relationship. This result is 

in agreement with a polydisperse system. Hence, we applied a similar analysis scheme as Sato 

et al. which consists of a three-component Guinier (Eq. (2)) to describe the I(q) data. 

     (2) 

In this case, Rg denotes the radius of gyration, and A is a pre-exponential factor. Being aware of 

the validity limit of the Guinier approach given by qRg=1.3, we show the fit for the entire scattering 

curve. The analysis of the scattering curves by Eq. (2) reveals the presence of three main species 

(Table 1). The minor radius (Rg1) represents minimal gliadin structure. This value increases with 

increasing gliadin concentration in solution (3.62 ± 2.63 nm at 0.5 wt% to 5.72 ± 0.23 nm at 1.5 

wt%). Our results are in agreement with the results of Sato et al. [31]. The large error of Rg1 at 0.5 

wt% arises from the poor statistics of the scattering profile. Two other radii are observed (Rg2 and 

Rg3). The second contribution arises from the formation of gliadin oligomers with increasing 

protein concentration in solution. Rg2 is computed to 21.05 ±12.76 nm for 0.5 wt% and 64.00 ± 

2.87 nm for 1.5 wt%, respectively. These values are also in agreement with the average radii 

calculated by DLS. Moreover, the third component of Eq. (2) yields Rg3 =240.09 ± 36.64 nm and 

587.85 ± 19.06 nm at the two concentrations, respectively. These experiments confirm the 

presence of rather large aggregates in the sample in agreement with the observed tailing of the 

hydrodynamic radius distribution and the cryo-TEM findings. 

The intermediate region of the scattering data can be approached by the Guinier-Porod model 

(Eq. (3)) which relates the Guinier and the Porod region [36] and is applicable for spherical and 

non-spherical objects. 
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𝐼(𝑞) =
𝐺

𝑞𝑠 exp (
−𝑞2𝑅𝑔

2

3−𝑠
) for  𝑞 ≤ 𝑞1and 𝐼(𝑞) =

𝐷

𝑞𝛼 for 𝑞 ≥ 𝑞1.      (3) 

Where q1=1/Rg(3α/2)1/2 relates the radius of gyration obtained from the Guinier analysis with the 

scattering exponent α from the scaling law in the Porod (low q region) region. G and D are the 

Guinier and Porod scaling factors, respectively. The s – parameter which is derived from the 

dimensionality parameter 3-s becomes for rods s =1. With α=1 and s=1 for the present system, 

this so-called Guinier-Porod model [36] can be applied to this system for 𝑄2 ≤  𝑄 ≤ 𝑄1 to derive 

information about the cross-section radius Rc and thus of the length of the gliadin monomers. Rc 

can then be derived by the relation 𝑅𝑔𝑐 =
𝑅𝑐

√2
 and determined from the slope m of the intermediate-

q Guinier plot ln(q∙I(q)) against q² as shown in Fig. 2C. With = −
1

2
𝑅𝑔𝑐

2 =  −
1

2
(

𝑅𝑐

√2
)

2
=  −

𝑅𝑐
2

4
, the 

cross-sectional radius is calculated by 𝑅𝑐 = √−4𝑚, where m is slope of the linear fit. In Fig. 2C, 

the limit condition qRc =1 in which this approximation holds true is underlined. The results are 

presented in Table 1. We observe that Rc remains nearly constant for both concentrations and is 

in accordance with the values calculated by Thomson et al., when gliadin was dissolved in 

ethanol-water mixtures. By taking the relation between Rg1 and Rc into account 𝑅𝑔1 = (
𝛬2

12
+

𝑅𝑐
2

2
) 

and assuming cylindrical shape for the gliadin molecules, the rod length Λ of the gliadin monomers 

can be calculated by Λ= √(12 Rg1
2 -6 Rc²) as presented in Table 1, too. By this calculation, we 

obtain a rod length of 12 and 19 nm for 0.5 wt% and 1.5 wt%, respectively. Sato et. al obtained 

similar values at dilute concentrations. Fig. 2D shows a Kratky plot (q2∙I(q) against q² is shown) 

for both concentrations which indicates rather disordered, unfolded structures present in solution, 

as previously reported [8,37,38]. 
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Figure 2. SAXS data. The solutions at 0.01 M HCl with protein concentrations of 0.5 wt% and 1.5 

wt% were measured at 10 °C. A) log-log plot of the SAXS data of the two dilute gliadin solutions 

with linear fits showing the scattering exponent α. B) Guinier plots for the two dilute gliadin 

solutions. The scattering profiles are fitted with a three-component Guinier equation (lines). The 

validity condition qRg=1.3 is shown for Rg1. C) Guinier-Porod plot for concentrations of 0.5 and 

1.5 wt% of gliadin at pH 3.0 and 10 °C. The limits qRc=1 for the model to be valid are shown. D) 

Kratky-plot (q2∙I(q) against q) of the gliadin solutions at 0.5 and 1.5 wt% at pH 3.0.  

 

Comparison of the cross-section values (Rc) of  1.50 ± 0.025 nm for gliadin monomer and 1.63 ± 

0.01 nm for gliadin dimer and the average length of 11.98  ± 0.11 nm and 19.41 ± 0.01 nm, for 

gliadin monomer and dimer respectively, suggesting that the gliadin dimers are formed 

longitudinally.  
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Conc 
(wt%) 

Rg1 / nm Rg2 / nm Rg3 / nm Rc / nm / nm 

0.5 3.62 ± 2.63 21.05 ± 12.76 240.09 ± 36.64 1.50 ± 0.025 11.98  ± 0.11 

1.5 5.72 ± 0.23 64.00 ± 2.87 587.85 ± 19.06 1.63 ± 0.01 19.41 ± 0.01 

Table 1: Radius of gyration (Rg) of gliadin at pH 3.0 calculated by fitting the SAXS profiles in 

Figure 2B with a three-component Guinier equation. The cross-section radius of gyration (Rc) and 

the average length () were calculated from the Guinier-Porod plot of Rg1. 

 
 
Bioinformatics analysis, structural prediction and MD simulation of α-gliadin 

 
The high oligomerisation/aggregation propensity of gliadin complicates the elucidation of the 3D 

structure of all gliadin isoforms by common high-resolution techniques like NMR or X-ray 

crystallography. To get a better understanding of the oligomerisation behaviour of gliadin at the 

atomistic level, we present our results by the use of different computational tools. As a basis for 

the numeric calculations, the alpha-gliadin sequence from the UniProt database with code 

Q9M4L6 was employed (Table 2). The amino acid composition is mainly glutamine (34.2%) and 

proline (15.6%), but also valine and serine are present with 5.2% in high percentage. Tyrosine 

and phenylalanine are present in a 3.1% and 3.9 %, respectively; in contrast, only one tryptophan 

residue is present. The hydrophobic profile of the alpha-gliadin primary structure was assessed 

using the Kyte-Doolittle scale (Fig. 3A) [21]. From this hydrophobicity plot, it is shown that α-

gliadin is mainly hydrophilic, in the regions 25-151 (blue box) and 225-275 (green box). In the C-

terminal region, there are short hydrophobic patches in the regions from 150 to 200 and from 275 

to 290 and are composed of 5 to 10 residues each. 

Alpha-gliadin,  >tr|Q9M4L6|Q9M4L6_WHEAT α-Gliadin OS=Triticum aestivum 

MVRVPVPQLQPQNPSQQQPQEQVPLVQQQQ30FPGQQQPFPPQQPYPQPQPFPSQQPYL

QLQ60PFPQPQLPYP70QPQLPYPQPQLPYPQPQPFRPQQPYPQSQP100QYSQPQQPISQQ

QQQQQQQQQQKQQQQQQQ130QILQQILQQQ140LIPCRDVVLQQHSIAYGSSQVLQQSTYQ

LV170QQLCCQQLWQIPEQSRCQAIHNVVHAIILH200QQQQQQQQQQ210QQPLSQVSFQQPQ

QQYPSGQGSFQPSQQNP240QAQGSVQPQQLPQFEEIRNLALETLPAMCN270VYIPPYCTIA2

80 PVGIFGTNYR290 

Table 2. The sequence of alpha-gliadin used for the computational analysis obtained by UniProt 

database.  
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To evaluate which regions of the protein are unfolded, we employed the intrinsic disorder analysis 

with IUPred [20]. This server predicts regions with a lack of structure by the estimation of their 

total pairwise inter-residue interaction energy considering that the sequences do not fold due to 

their inability to form sufficient stabilising inter-residue interactions. It was computed that gliadin 

presents highly disordered regions along the molecule (Fig. 3B), which is in concordance with 

previous secondary structure experiments [8,37,38]. Interestingly, the unfolded regions 

correspond to the previously mentioned hydrophilic regions (25-125 and 225-250), suggesting 

that they may be highly exposed to the solvent.  

 

Figure 3. Bioinformatics analysis. A) Hydrophobicity plot of the alpha-gliadin sequence performed 

using Kyte-Doolittle parameters. B) Disorder regions predicted using the IUPred server. Scores 

above 0.5 indicate disorder. The blue and the green boxes indicate the residues 25-151 and 225 

to 250 which are hydrophilic and have highest disorder tendency. 

 

Tridimensional predictions of α/β-, γ- and ω- gliadin isoforms, but not of alpha-gliadin isoform, 

have been computed using a hierarchical approach based on the sequences of these proteins 

[39]. Here, the alpha-gliadin sequence was retrieved from UniProt as aforementioned and 

uploaded to the I-TASSER web server, (best-ranked protein structure prediction server in the last 

CASP12 edition (Critical Assessment of Techniques for Protein Structure Prediction)), to predict 

a set of possible structures. Then, the best energy-scored structure was subjected to a 500 ns 

long explicit-water MD simulation to test the stability of the predicted structure and get insights 

into the native ensemble of the alpha-gliadin isoform in solution. 
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An initial inspection of the best-scored model obtained by I-TASSER hints at an ellipsoidal 

conformation. A reduced number of residues with ψ / φ values in the canonical Ramachandran 

distribution were found where 48 residues (16.7 %) are in the outline of the probability zones (Fig. 

4A and Fig.S2). Next, we applied a minimisation and equilibration protocol before MD production, 

where the backbone was slowly freed in successive harmonical restrained simulations. Fig. 4B 

shows the last frame of the unrestrained equilibration step before the MD production (Fig. 4C). 

Here, 8 residues (2.8 %) are outliers of the more favourable zones, whereas in the last frame of 

the MD production, only 4 residues (1.4 %) are outliers and 98.6 % are in favoured regions of the 

Ramachandran distribution. This result exemplifies how the molecular simulation corrects the 

dihedral backbone angles. 
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Figure 4. Ramachandran plot. A) The distribution of ψ/φ values for the I-TASSER best-scored 

mode, B) the last frame of MD equilibration and C) the last frame of MD production. The red 

symbols denote residues outside the probability zone, the orange symbols are residues in the 

less favoured probability zones, and the black symbols are those residues in the more favoured 
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zones. The plots were performed using the RAMPAGE online tool 

(http://mordred.bioc.cam.ac.uk/~rapper/rampage.php). 

 
More than the 90 % of the residues are in an unstructured/disordered conformation, and only ~8 

% in helical structure as was calculated by the DSSP algorithm [40]. This result is in agreement 

with previous circular dichroism experiments [8], denoting a protein with a low secondary structure 

content. In the same way, a low secondary structure acquisition was observed during the MD 

production. Here, 86 % of the residues remain in non-canonical secondary structure 

conformation, and the helical content increases only to ~11 % in average over the production 

simulation. The remaining 3% are in β conformation (Fig. 4C). 

The root-mean-square (RMS) profile of α-gliadin, achieved through the LOVO fit algorithm, 

shows a stable structure along the simulation. The best-aligned region has an average RMSD 

value of 0.2 nm and with a small increase of 0.3 nm at the end of the simulation (Fig. 5A) but it 

does not exhibit local unfolding. The plot of the RMS per residue shows a significant fluctuation 

at the end of the protein, around 30 residues in the N-terminus and the last 10 residues in the C-

terminus (Fig. 5B). Whereas and due to the unstructured behaviour of α-gliadin, the number of 

native contacts (Fig. 5D) is unchanged during the simulation suggesting a stable and suitable α-

gliadin model. The radius of gyration (Rg) shows a typical distribution along the simulation with a 

maximum frequency around 2.13 nm which is of the order of magnitude of the Rg1 calculated by 

SAXS (see Table 1 and Ref. 31 ). The observed differences may arise from a higher hydration of 

the protein in solution.  
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Figure 5: MD simulation analysis. A) RMSD for all atoms (black line) and the best-aligned fraction 

(red line) obtained by the LOVO fit analysis. The parameter φ used to perform the fitting was 0.65, 

and the RMSD profile of those residues are shown in red (best-aligned region). B) From the same 

analysis, the C-α RMSF is shown. The first 50 ns was not taken into account for RMS analysis to 

diminish initial conformation bias. C) Histogram of the radius of gyration (Rg) over the whole 

trajectory. The Rg of maximal frequency was 2.13 nm. A second maximum at 2.24 nm was also 

obtained. D) The number of contacts over the simulation time is shown. The cutoff radius set over 

the alpha carbon atoms was 5 Å. 

 

The topology of the last frame of the molecular dynamics is shown in Fig. 6A (see also TableS3). 

Next, considering that gliadin can self-assemble, we evaluated the potential aggregation “nuclei” 

of this protein by sequence-based methods. For that, we employed two predictors, AGGRESCAN 

and Tango (see Materials and Methods), mapping the residues tendency towards aggregation. 

Tango predicted that residues 132-137, 147-151, 166-170, 192-199, 281-289 are prone to 

aggregation meanwhile AGGRESCAN predicted the residues 169-178, 190-198, 267-273, 276-

280 and 282-290. Both methods predict that the C-terminal region is prone to aggregation 

especially in the regions 190-199 and 281-290 (Fig. 6B). A further analysis of the sequence and 

the parameters obtained by MD (see TableS3) showed that the region 143-149 is unstructured, 

while between residues 147 to 151 hydrophobic amino acids as valine and isoleucine are present, 
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which are prone to aggregation. On the other hand, the regions 171-179 and 191-200, are turns 

and extended structures. Both regions are predicted to aggregate. It is interesting to notice that 

the 171-179 region that has a high content of glutamine has been reported to interact with the 

CXCR3 receptor, inducing zonulin release and increasing the gut’s permeability [41]. In the region 

191-200 are valine, isoleucine and alanine highly frequent, contributing to the hydrophobicity of 

the region and favouring the observed self-assembly. In the C-terminus region, residues from 265 

to 285, a turn and 310 helix structure is predicted; this region has a high propensity for aggregation 

due to the hydrophobic nature of the amino acids, mainly alanine, valine, isoleucine and aromatic 

amino acids as tyrosine and phenylalanine.  

Finally, a three-dimensional analysis of the regions predicted here was done taking the structure 

of the last frame of the MD simulation and observing the position of each region predicted to 

aggregate in the model obtained. We observed that these residues are exposed to the solvent 

generating two surfaces that are shown in Fig. 6C. We hypothesise that these regions may be 

the surfaces in which protein-protein interaction might occur favouring the formation of gliadin 

dimers longitudinally. 

 

 

Figure 6. Structural visualisation of gliadin.  A) The topology of the last frame of α-gliadin obtained 

by the MD simulation; showing α-helix (magenta), 3-10 helix (blue), β-structure (yellow), turns 

(green), random coils (white), (see TableS3). B) Graphical representation of aggregation profile 

of α -gliadin, obtained by Tango (red) and AGGRESCAN (blue). C) Surface representation of the 

residues predicted to aggregate (magenta) in the alpha-gliadin structure by AGGRESCAN and 

Tango, showing the existence of two possible regions of protein-protein interaction.  
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Conclusion 

In this work, we analyse the supramolecular assembly of gliadin in diluted solution at pH 3.0. This 

pH is a typical value in the digestive process, and therefore the behaviour of this immunogenic 

and proteolytically stable protein has a paramount importance. Under these conditions at close to 

physiological ionic strength, gliadin is found to form aggregates with a broad range of sizes and 

a tendency to form elongated structures which were visualised by cryo-TEM and computed by 

SAXS experiments (the scattering exponent of ≈1). To better understand the molecular nature of 

the initial steps in the self-assembly process, we have performed MD simulations to generate 

energy minimised structures of the protein and used different bioinformatics predictors to obtain 

information about hydrophobicity and aggregation propensity. Our alpha-gliadin 3D model 

obtained by ab initio and MD predicts that two surfaces prone to aggregation are exposed to the 

solvent, at the C-terminus. The occurrence of a hydrophobic surface in the regions of 199-198 

and 281-289 amino acids allows the dimerisation process at the C-terminus. These regions are 

composed mainly of hydrophobic amino acids with a defined extended secondary structure (beta 

and turns). Altogether this can explain the high propensity of oligomerisation observed, showing 

that the C-terminus of alpha-gliadin can trigger the oligomerisation process. The occurrence of 

gliadin oligomers even at diluted conditions can explain the up to now unexplained proteolytical 

resistance, and thus the hypothesis of incapability of digestive enzymes to access to the 

degradation sites of gliadin is reasonable. Moreover, considering the reported innate 

immunological response triggered by gliadin, the hypothesis of colloidal nanostructures of gliadin 

as real triggers instead of randomly disperse gliadin may explain the reported immune and tissue 

stress. Our findings of the gliadin oligomerisation might be a first step towards the understanding 

of gliadin in vitro and in vivo behaviour. 
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