16,598 research outputs found
Practical considerations in aeroelastic design
The structural design process for large transport aircraft is described. Critical loads must be determined from a large number of load cases within the flight maneuver envelope. The structural design is also constrained by considerations of producibility, reliability, maintainability, durability, and damage tolerance, as well as impact dynamics and multiple constraints due to flutter and aeroelasticity. Aircraft aeroelastic design considerations in three distinct areas of product development (preliminary design, advanced design, and detailed design) are presented and contrasted. The present state of the art is challenged to solve the practical difficulties associated with design, analysis, and redesign within cost and schedule constraints. The current practice consists of largely independent engineering disciplines operating with unorganized data interfaces. The need is then demonstrated for a well-planned computerized aeroelastic structural design optimization system operating with a common interdisciplinary data base. This system must incorporate automated interfaces between modular programs. In each phase of the design process, a common finite-element model for static and dynamic optimization is required to reduce errors due to modeling discrepancies. As the design proceeds from the simple models in preliminary design to the more complex models in advanced and detailed design, a means of retrieving design data from the previous models must be established
Nonlinear Band Gap Transmission in Optical Waveguide Arrays
The effect of nonlinear transmission in coupled optical waveguide arrays is
theoretically investigated via numerical simulations on the corresponding model
equations. The realistic experimental setup is suggested injecting the beam in
a single boundary waveguide, linear refractive index of which () is larger
than one () of other identical waveguides in the array. Particularly, the
effect holds if , where is a linear coupling constant
between array waveguides, is a carrier wave frequency and is a
light velocity. Making numerical experiments in case of discrete nonlinear
Schr\"odinger equation it is shown that the energy transfers from the boundary
waveguide to the waveguide array above certain threshold intensity of the
injected beam. This effect is explained by means of the creation and
propagation of gap solitons in full analogy with the similar phenomenon of
nonlinear supratransmission [F. Geniet, J. Leon, PRL, {\bf 89}, 134102, (2002)]
in case of discrete sine-Gordon lattice.Comment: 4 pages, 6 figures. Phys. Rev. Lett. (in press
A simple operational interpretation of the fidelity
This note presents a corollary to Uhlmann's theorem which provides a simple
operational interpretation for the fidelity of mixed states.Comment: 1 pag
Influence of the temperature on the dielectric properties of epoxy resins
Electrical degradation processes in epoxy resins, such as electrical treeing, were found to be dependent on the temperature at which the experiments were carried out. Therefore, it is of considerable research interest to study the influence of temperature on the dielectric properties of the polymers and to relate the effect of temperature on these properties to the possible electrical degradation mechanisms. In this work, the dielectric properties of two different epoxy resin systems have been characterized via dielectric spectroscopy. The epoxy resins used were bisphenol-A epoxy resins Araldite CY1301 and Araldite CY1311, the later being a modified version of the former with added plasticizer. The CY1301 samples were tested below and above their glass transition temperature, while the CY1311 were tested well above it. Both epoxy systems possess similar behaviour above the glass transition temperature, e.g. in a flexible state, which can be characterized as a low frequency dispersion (LFD). On the other hand, it was found that below the glass transition temperature CY1301 samples have almost “flat” dielectric response in the frequency range considered. The influence of possible interfacial features on the measured results is discussed
Architectural Urbanism: Melbourne/Seoul
Architectural Urbanism is an ambition and sensibility for propositions that address the context of the city within the operative scale of the small architectural project. Architectural urbanism represents a tailoring of projects to the local; to the materiality and specificity of the everyday; and to the grain and substance of the location above all else. Architectural urbanism is less about erasure and more about insertion; infill; the weaving of old and new and the dynamics that evolve from subtle and careful manipulation of the city in detail.
The exhibition explores commonality in the apparently different contexts of both cities – speculating on these as forms of ‘architectural urbanism' in the contemporary city of the Asia-Pacific at its northern and southern extremes.
Architectural projects from five Melbourne architectural practitioners have been selected to exhibit in Seoul. The practices are: Muir Mendes, Baracco + Wright, Iredale Pederson Hook, NMBW Architecture Studio and Kerstin Thompson Architects - all of whom have strong links to the RMIT Architecture design research and teaching community.
Melanie Dodd co-curated the exhibition
Technology utilization data searches
Technology Use Studies Center activities, functions, and services are reported for this period. Transfers and searches are described. Characteristics of TUSC searches are tabulated
Recommended from our members
The measurement of very low conductivity and dielectric loss in XLPE cables: A possible method to detect degradation due to thermal aging
The dielectric response of crosslinked polyethylene (XLPE) insulated, miniature power cables, extruded with inner and outer semicons, was measured over the frequency range 10-4 to 104 Hz at temperatures from 20 to 100 °C. A dielectric spectrometer was used for the frequency range 10-4 to 10-2 Hz. A bespoke noise-free power supply was constructed and used to measure the dc conductivity and, using a Fourier transform technique, it was also used to measure the very low dielectric tanδ losses encountered at frequencies of 1 to 100 Hz. Tanδ measurements of <;10-5 were found in this frequency range and attributed to a β-mode dielectric relaxation lying above 100 Hz due to motion of chain segments in the amorphous region and an β-mode relaxation lying below 1 Hz window due to twists of chains in the crystal lamellae. The dc conductivity measurements were consistent with those of the dielectric spectrometer and indicate lower dc conductivities in vacuum degassed cables than have been previously reported for XLPE (less than 10-17 S.m-1). The conduction process is thermally activated with an activation energy of approximately 1.1 eV. Higher conductivities were found for non-degassed cables. A transformer ratio bridge was used for measurements in the range 1 to 10 kHz; loss in this region was shown to be due to the series resistance of the semicon layers. Thermal ageing of the cables at 135 °C for 60 days caused significant increases in the conductivity and tanδ and it is considered that such measurements may be a sensitive way of measuring electrical degradation due to thermal aging
Localized matter-waves patterns with attractive interaction in rotating potentials
We consider a two-dimensional (2D) model of a rotating attractive
Bose-Einstein condensate (BEC), trapped in an external potential. First, an
harmonic potential with the critical strength is considered, which generates
quasi-solitons at the lowest Landau level (LLL). We describe a family of the
LLL quasi-solitons using both numerical method and a variational approximation
(VA), which are in good agreement with each other. We demonstrate that kicking
the LLL mode or applying a ramp potential sets it in the Larmor (cyclotron)
motion, that can also be accurately modeled by the VA.Comment: 13 pages, 11 figure
- …
