The effect of nonlinear transmission in coupled optical waveguide arrays is
theoretically investigated via numerical simulations on the corresponding model
equations. The realistic experimental setup is suggested injecting the beam in
a single boundary waveguide, linear refractive index of which (n0) is larger
than one (n) of other identical waveguides in the array. Particularly, the
effect holds if ω(n0−n)/c>2Q, where Q is a linear coupling constant
between array waveguides, ω is a carrier wave frequency and c is a
light velocity. Making numerical experiments in case of discrete nonlinear
Schr\"odinger equation it is shown that the energy transfers from the boundary
waveguide to the waveguide array above certain threshold intensity of the
injected beam. This effect is explained by means of the creation and
propagation of gap solitons in full analogy with the similar phenomenon of
nonlinear supratransmission [F. Geniet, J. Leon, PRL, {\bf 89}, 134102, (2002)]
in case of discrete sine-Gordon lattice.Comment: 4 pages, 6 figures. Phys. Rev. Lett. (in press