1,187,858 research outputs found

    The Appreciative Heart: The Psychophysiology of Positive Emotions and Optimal Functioning

    Get PDF
    This monograph is an overview of Institute of HeartMath's research on the physiological correlates of positive emotions and the science underlying two core HeartMath techniques which supports Heart-Based Living. The heart's connection with love and other positive emotions has survived throughout millennia and across many diverse cultures. New empirical research is providing scientific validation for this age-old association. This 21-page monograph offers a comprehensive understanding of the Institute of HeartMath's cutting-edge research exploring the heart's central role in emotional experience. Described in detail is physiological coherence, a distinct mode of physiological functioning, which is generated during sustained positive emotions and linked with beneficial health and performance-related outcomes. The monograph also provides steps and applications of two HeartMath techniques, Freeze-Frame(R) and Heart Lock-In(R), which engage the heart to help transform stress and produce sustained states of coherence. Data from outcome studies are presented, which suggest that these techniques facilitate a beneficial repatterning process at the mental, emotional and physiological levels

    Controls on dissolved organic carbon quantity and chemical character in temperate rivers of North America

    Get PDF
    Understanding the processes controlling the transfer and chemical composition of dissolved organic carbon (DOC) in freshwater systems is crucial to understanding the carbon cycle and the effects of DOC on water quality. Previous studies have identified watershed‐scale controls on bulk DOC flux and concentration among small basins but fewer studies have explored controls among large basins or simultaneously considered the chemical composition of DOC. Because the chemical character of DOC drives riverine biogeochemical processes such as metabolism and photodegradation, accounting for chemical character in watershed‐scale studies will improve the way bulk DOC variability in rivers is interpreted. We analyzed DOC quantity and chemical character near the mouths of 17 large North American rivers, primarily between 2008 and 2010, and identified watershed characteristics that controlled variability. We quantified DOC chemical character using both specific ultraviolet absorbance at 254 nm (SUVA254) and XAD‐resin fractionation. Mean DOC concentration ranged from 2.1 to 47 mg C L−1 and mean SUVA254 ranged from 1.3 to 4.7 L mg C−1 m−1. We found a significant positive correlation between basin wetland cover and both bulk DOC concentration (R2 = 0.78; p \u3c 0.0001) and SUVA254 (R2 = 0.91; p \u3c 0.0001), while other land use characteristics were not correlated. The strong wetland relationship with bulk DOC concentration is similar to that found by others in small headwater catchments. However, two watersheds with extremely long surface water residence times, the Colorado and St. Lawrence, diverged from this wetland relationship. These results suggest that the role of riverine processes in altering the terrestrial DOC signal at the annual scale was minimal except in river systems with long surface water residence times. However, synoptic DOC sampling of both quantity and character throughout river networks will be needed to more rigorously test this finding. The inclusion of DOC chemical character will be vital to achieving a more complete understanding of bulk DOC dynamics in large river systems

    Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Get PDF
    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones

    The Effect of Natural Dissolved Organic Carbon on the Acute Toxicity of Copper to Larval Freshwater Mussels (\u3cem\u3eGlochidia\u3c/em\u3e)

    Get PDF
    The present study examined the effect of dissolved organic carbon (DOC), both added and inherent, on Cu toxicity in glochidia, the larvae of freshwater mussels. Using incremental additions of natural DOC concentrate and reconstituted water, a series of acute copper toxicity tests were conducted. An increase in DOC from 0.7 to 4.4 mg C/L resulted in a fourfold increase (36–150 μg Cu/L) in the 24-h median effective concentration (EC50) and a significant linear relationship (r2=0.98, p=0.0008) between the DOC concentration and the Cu EC50 of Lampsilis siliquoidea glochidia. The ameliorating effect of added DOC on Cu toxicity was confirmed using a second mussel species, the endangered (in Canada) Lampsilis fasciola. The effect of inherent (i.e., not added) DOC on Cu toxicity was also assessed in eight natural waters (DOC 5–15 mg C/L). These experiments revealed a significant relationship between the EC50 and the concentration of inherent DOC (r2=0.79, p=0.0031) with EC50s ranging from 27 to 111 μg Cu/L. These laboratory tests have demonstrated that DOC provides glochidia with significant protection from acute Cu toxicity. The potential risk that Cu poses to mussel populations was assessed by comparing Cu and DOC concentrations from significant mussel habitats in Ontario to the EC50s. Although overall mean Cu concentration in the mussel’s habitat was well below the acutely toxic level given the concentration of DOC, episodic Cu releases in low DOC waters may be a concern for the recovery of endangered freshwater mussels. The results are examined in the context of current Cu water quality regulations including the U.S. Environmental Protection Agency’s (U.S. EPA) biotic ligand model

    Mechanisms of carbon and nutrient release from acid impacted soils: Investigating competitive sorption and aggregate dispersion

    Get PDF
    Dissolved organic carbon (DOC) and associated nutrients are of critical importance to natural biogeochemical cycling. In recent decades, increased amounts of DOC have been observed in Northern Hemisphere surface waters recovering from acid deposition. Such increases in DOC can have significant implications for the productivity of surface waters, yet the mechanisms controlling DOC release are yet to be understood. As soils are one of the primary sources of DOC in surface waters, this study attempts to identify mechanisms controlling DOC release from soils in the context of changing deposition chemistry. Two experiments were designed to investigate two soil-related processes that can lead to the liberation of DOC and nutrients from riparian zone (RZ) and hillslope (HS) soils. First RZ soils collected from the Sleepers River USGS research station were used to conduct a flow through experiment using simulated sulfate impacted and non-impacted soils. In this experiment DOC solution was infiltrated to test the effect of competitive sorption between DOC and sulfate, however this effect could not be confirmed. In a second experiment, a batch approach was used to test the effect of pH and ionic strength (IS) on aggregate dispersion in both RZ and HS soils. Results reveal that IS, not pH, strongly controlled DOC release in all soils presumably by impacting soil aggregation. Release of DOC and P was similar for RZ vs. HS soils, however N release was significantly higher from RZ soils, indicating soil type and landscape position matter for nutrient release. Together these results indicate that changes in deposition IS more than pH or sulfate additions play a major role in the release of DOC and nutrients from soils at Sleepers River, likely due to the connection between IS and soil aggregate dispersion

    Fluvial transport of suspended sediment and organic carbon during flood events in a large agricultural catchment in southwest France.

    Get PDF
    Water draining from a large agricultural catchment of 1 110 km2 in southwest France was sampled over an 18-month period to determine the temporal variability in suspended sediment (SS) and dissolved (DOC) and particulate organic carbon (POC) transport during flood events, with quantification of fluxes and controlling factors, and to analyze the relationships between discharge and SS, DOC and POC. A total of 15 flood events were analyzed, providing extensive data on SS, POC and DOC during floods. There was high variability in SS, POC and DOC transport during different seasonal floods, with SS varying by event from 513 to 41 750 t; POC from 12 to 748 t and DOC from 9 to 218 t. Overall, 76 and 62% of total fluxes of POC and DOC occurred within 22% of the study period. POC and DOC export from the Save catchment amounted to 3090 t and 1240 t, equivalent to 1·8 t km−2 y−1 and 0·7 t km−2 y−1, respectively. Statistical analyses showed that total precipitation, flood discharge and total water yield were the major factors controlling SS, POC and DOC transport from the catchment. The relationships between SS, POC and DOC and discharge over temporal flood events resulted in different hysteresis patterns, which were used to deduce dissolved and particulate origins. In both clockwise and anticlockwise hysteresis, POC mainly followed the same patterns as discharge and SS. The DOC-discharge relationship was mainly characterized by alternating clockwise and anticlockwise hysteresis due to dilution effects of water originating from different sources in the whole catchment

    Leaching of organic nitrogen and carbon after cultivating grass-clover pastures

    Get PDF
    Leaching of organic nitrogen (DON) and carbon (DOC) was measured after cultivating grass-clover of different age. It was found that DON and escpecially DOC was lost in considerable amounts, and that the leaching depends upon crop and management. The highest concentrations of DON were measured in the bare soil treatment, whereas concen-trations in catch crop treatments were between 1.2 and 3.2 mg N L-1. The leaching of DOC showed opposite trends compared to leaching of DON with higher values in the catch crop treatments (296 - 310 kg DOC ha-1) than in bare soil treatments (174 - 217 kg DOC ha-1)

    Spatial and temporal variation in degradation of dissolved organic carbon on the main stem of the Lamprey River

    Get PDF
    Degradation of dissolved organic carbon by microbial and photolytic processes was examined along the main stem of the Lamprey River Watershed located in southeastern New Hampshire. Eight sites were chosen and sampled biweekly throughout the seasonal hydrograph. Lab incubations were employed to assess microbial degradation of dissolved organic carbon (DOC) where one set of samples was exposed to natural sunlight for a day to assess photolytic degradation. Mean biodegradable dissolved organic carbon (BDOC) throughout the study period was 5.8% with no significant variation observed between sites. Temporal variation was found to be a much stronger driver of DOC composition with summer showing the highest degradation of 8.6% and winter the lowest. Initial DOC concentration was found to be the only significant positive predictor of BDOC on both an annual and seasonal scale. Photolysis had no significant effect on DOC degradation or availability of DOC to the microbial pool. Findings suggest that temporal variation is a significant driver of DOC composition via DOC sources that change throughout the season
    • …
    corecore