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Abstract 

Dissolved organic carbon (DOC) and associated nutrients are of critical importance to 

natural biogeochemical cycling. In recent decades, increased amounts of DOC have been 

observed in Northern Hemisphere surface waters recovering from acid deposition. Such 

increases in DOC can have significant implications for the productivity of surface waters, yet the 

mechanisms controlling DOC release are yet to be understood. As soils are one of the primary 

sources of DOC in surface waters, this study attempts to identify mechanisms controlling DOC 

release from soils in the context of changing deposition chemistry.  

Two experiments were designed to investigate two soil-related processes that can lead to 

the liberation of DOC and nutrients from riparian zone (RZ) and hillslope (HS) soils. First RZ 

soils collected from the Sleepers River USGS research station were used to conduct a flow 

through experiment using simulated sulfate impacted and non-impacted soils. In this experiment 

DOC solution was infiltrated to test the effect of competitive sorption between DOC and sulfate, 

however this effect could not be confirmed. In a second experiment, a batch approach was used 

to test the effect of pH and ionic strength (IS) on aggregate dispersion in both RZ and HS soils. 

Results reveal that IS, not pH, strongly controlled DOC release in all soils presumably by 

impacting soil aggregation. Release of DOC and P was similar for RZ vs. HS soils, however N 

release was significantly higher from RZ soils, indicating soil type and landscape position matter 

for nutrient release. Together these results indicate that changes in deposition IS more than pH or 

sulfate additions play a major role in the release of DOC and nutrients from soils at Sleepers 

River, likely due to the connection between IS and soil aggregate dispersion.  
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Introduction 

The Importance of Dissolved Organic Carbon 

Dissolved organic carbon (DOC) plays a crucial role in our environment. DOC influences 

productivity within aquatic ecosystems, serves as a critical transport vessel for nutrients and 

metals, and greatly influences photic depth of surface waters via light attenuation (Gergel et al. 

1999; Porcal et al. 2009; Thrane et al. 2014). DOC is also the most labile fraction of carbon (C), 

which means it is readily processed by microorganisms that can transfer DOC into the 

greenhouse gas CO2 (Gougoulias et al. 2014; Sondergaard & Middelboe 1995).  

Freshwater ecosystem nutrient condition is often a function of DOC and its nitrogen (N) 

and phosphorus (P) constituents (Gerson et al. 2016). DOC in surface waters can be either 

autochthonous (produced on site) or allochthonous (produced elsewhere and transported); hence 

DOC has important implications for nutrient flow into and within aquatic systems. Because DOC 

serves as a source of energy at low trophic levels, the success of all aquatic organisms, including 

microorganisms and macrophages, ultimately depends on it.  

The relationship between DOC and acidity additionally plays an important role in surface 

water nutrient availability. DOC compounds contain weak acid constituents, and can 

consequently impact surface water acidity (Perdue et al. 1980; Porcal et al. 2009) by releasing H+ 

ions in high ambient pH (>5.5), or acting as a buffer in more acidic waters (Clair et al. 2011). 

Surface water acidity determines the solubility and consequent bioavailability of N and P (USGS 

2016). 

Not only do vital elements such as N and P co-vary with DOC, metals can also be 

complexed with organic matter compounds, including dissolved complexes (Gergel et al. 1999; 
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Porcal et al. 2009). Such organo-metal associations can keep metals in solution and mobile under 

conditions where the metal itself would not be stable.  

Furthermore, light attenuation throughout the water column is governed in large part by 

chromatic (or colored) dissolved organic matter (CDOM), the light absorbing component of 

DOC (Thrane et al. 2014), particularly in lakes of low to moderate productivity (Houser 2006). 

Light attenuation determines photic depth, greatly influencing the vertical range of 

photosynthetic organisms throughout the water column. Due to the great importance of DOC in 

surface waters, it is monitored carefully across the globe. 

 

Changes in DOC and Nutrient Constituents 

Increased concentrations of DOC have been observed throughout Northern Hemisphere 

surface waters over the past three decades (Evans et al. 2006; Worrall & Burt 2004). This was 

exemplified by the UK Acid Waters Monitoring Network, which reported a 91% increase in 

DOC concentrations in UK lakes and streams between 1988 and 2006 (Evans et al. 2006).  

Given the ability of DOC to act as a nutrient transport vessel, increases in allochthonous 

DOC offer the potential to provide limiting nutrient additions to aquatic ecosystems, a 

contribution that is of particular importance for P (Gerson et al. 2016). This connection might 

lead to increased productivity such as surface water algal blooms, however the outcome of 

nutrient additions is highly dependent on the previous environmental conditions. For example, 

increases in CDOM concentrations associated with allochthonous DOC may reduce the range 

and level of productivity due to increased light attenuation by CDOM making less light available 

to photosynthetic organisms. Multiple studies have shown that there is a threshold at which light 

attenuation by DOC limits productivity (Seekell et al. 2015a; Seekell et al. 2015b). A clear, 
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oligotrophic northern lake, for example, may be expected to have increased its primary 

productivity in the previous few decades, while a eutrophic, low elevation lake may have done 

the opposite as any increase in CDOM would limit photosynthesis (Seekell et al. 2015a).  

The strong connection between DOC, nutrients, and differing responses of productivity to 

variations in both lends additional urgency to identifying drivers for DOC increases. Specifically 

which drivers are prominently responsible for DOC increases is highly debated in the scientific 

community, but recovery from acidification is put forth as one potential driver (Clark et al. 2010; 

Seifert-Monson et al. 2014). 

 

Acid Deposition, Recovery, and DOC 

Acid deposition was a result of previously high levels of atmospheric N oxides and sulfur 

dioxide (SO2), which led to the formation of strong acids. As one of the chief acidifying agents 

of anthropogenic acid deposition, sulfuric acid (H2SO4) supplies protons (low pH) and sulfate 

(SO42-) ions to soils, substantially increasing acidity and ionic strength (IS). In decades following 

the clean air act and subsequent legislation, the amount of SO2 and resulting H2SO4 deposition 

has decreased substantially, with the result of decreased inputs of hydrogen ions and anion 

concentrations (Driscoll et al. 2001).  

Reduction of sulfur loading is one of the most significant atmospheric chemistry changes 

to have occurred in recent decades, and is widely correlated with increases in DOC 

concentrations (Evans et al. 2006; Porcal et al. 2009). Across hundreds of study sites, changes in 

anion composition of atmospheric deposition have been shown to relate to DOC increases, 

particularly in regions where acid deposition has declined significantly (Porcal et al. 2009). 

Decreases in acidity, sulfate concentration, and IS are all suggested as drivers for increased DOC 
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release associated with recovery from acid deposition (Porcal et al. 2009), although research is 

currently mostly limited to correlations. It is difficult to decipher between the influence of acidity 

and ionic components however as the changes occurred together (Clark et al. 2006), and it is 

difficult to determine what specific mechanisms exist that may explain the relationship between 

deposition recovery and DOC changes. To date, it is unclear if decreases in acidification are 

related mechanistically to increases in DOC. 

This study seeks to experimentally isolate the influence of sulfate additions, pH changes, 

and IS changes on DOC release from soils, and offers a mechanistic link to explain how these 

changes may control DOC release.   

 

Potential Mechanistic Links between Recovery and DOC 

1)   Mechanism 1: Competitive Sorption  

Competitive sorption is the process where two chemical species compete for the same 

sorption sites on a surface. The prolonged deposition of sulfate onto acid impacted soils might 

have saturated sorption sites on the surface of soil particles with sulfate. Both sulfate and DOC 

share an affinity for binding sites on soil particles and aggregates, consequently putting them in 

competition (Eimers et al. 2008; Gobran et al. 1998; Kerr & Eimers 2012).  

During recovery from acid deposition, sulfate concentrations decreased and soil binding 

sites occupied by sulfate may have gradually been filled with binding DOC. While Kerr and 

Eimers (2012) discuss that this could theoretically increase DOC adsorption in soils, 

consequently decreasing flux into surface water, this would not be a long-term effect: as soils 

gradually recovered from acid deposition, sulfate would have quickly been replaced by DOC. 

With higher capacity for C stores within the soil, hydrological events may be able to create 
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higher DOC flux into surface waters at concentrations too high to be processed quickly in the 

environment, resulting in overall higher surface DOC. The connection between DOC and soil 

sulfate content has already been tested in a field study using sulfate amendments on peatland 

soils (Seifert-Monson et al. 2014), as well as in a laboratory analysis utilizing a sequential soil 

horizon leaching technique (Gobran et al. 1998). 

2)   Mechanism 2: Aggregation and Dispersion 

Aggregation occurs when soil particles are able to bind to one another, creating 

“aggregate” structures within soils. Aggregates contain a variety of components, including 

minerals, clays, microorganisms, and other organic material (Nimmo 2005; Totsche et al. 2018), 

where ratios depend on the soil composition (Fig. 1). This aggregation process is capable of 

physically surrounding and protecting organic matter, preventing its dissolution and release.  

 

 

 

Figure 1: Components of a soil aggregate. Modified from (Chorover et al. 2007). 
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Cation bridging 

Cation bridging contributes to aggregation by providing a means of connecting outwardly 

negatively charged soil constituents (often clay particles or bacteria) that would otherwise repel 

one another, and occurs in the presence of cations in soil solution. These binding forces are 

strongest with polyvalent cations (e.g. Ca2+), which can bond to multiple separate particles with 

outward negative charges (Wuddivira & Camps-Roach 2007). Solutions containing higher 

concentrations of cations consequently promote aggregation in soils.  

Aggregation is not however solely dependent on polyvalent cations. The presence of 

monovalent cations, specifically hydrogen ions in the context of acidity, can increase 

aggregation. Organic acid compounds found in soils (humic and fulvic acids) typically 

aggregate, contributing to microaggregation. The compounds are significantly influenced by pH, 

and as pH increases the hydrogen bonding and Vander Waals activity between them weakens, 

reducing the strength of these forces (Schnitzer & Khan 1978). High pH in soils can also 

increase negative charge on organic molecules, which in turn reduces complexation by 

contributing to negative charge dispersal (Rengasamy & Olsson 1991). Consequently, 

aggregation should dominate at low pH, effectively sequestering DOC, while dispersion should 

dominate at high pH, releasing DOC into leached soil solution.  

Ionic strength effects on the diffuse double layer 

In addition to cation dominated interactions, soil particle aggregation is also influenced 

by the overall IS of the surrounding solution. At the surface of outward-facing negatively 

charged clay particles, two “layers” of distinct charge patterns can be identified, forming a 

“diffuse double layer” (Fig. 2). Cations in soil solution are attracted to a negatively charged clay 

particle, forming a layer of tightly grouped cations (Moore & Reynolds 1997). The close 
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grouping of these positive charges consequently attracts anions or negative poles of aqueous 

compounds, which in turn attracts a less tightly grouped layer of cations. This pattern continues, 

dissipating charge into a “diffuse” layer, together with the tightly grouped layer forming the 

diffuse double layer (Fig. 2, Moore & Reynolds 1997). 

 In soil solution of higher IS, the attractive forces within the diffuse double layer are 

stronger and compress the diffuse double layer until Van der Waals attractive forces overwhelm 

the repulsive charge forces, and aggregation occurs (Derjaguin & Landau 1941; Verwey 1947). 

Hence, soil solutions of high IS should have a greater potential to protect organic matter by 

fostering aggregation.  

 

 

 
 
 

Figure 2: Visualization of the diffuse double layer. Modified from (Moore & Reynolds 1997). 
 

 

 

 

Tightly 
grouped layer
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The Role of Landscape Position in DOC and Nutrient Dynamics 

Differences in landscape position can have large impacts on the type and amount of soil 

C and resulting DOC (Parry et al. 2015; Sadro et al. 2012). In many cases, the watershed 

landscape explains much of DOC and total organic carbon characteristics in surface waters, 

especially where aquatic systems are dependent on allochthonous DOC over autochthonous 

DOC (Gergel et al. 1999).  

The influence of landscape is particularly relevant when considering riparian zone (RZ) 

compared with hillslope (HS) DOC release from soils into surface waters, as most stream water 

DOC is sourced either from HS soils or near-stream RZ soils. As RZ soils border surface waters, 

water travels through or over RZ soils immediately prior to entering streams or lakes. Therefore, 

RZ soils have a great influence on DOC discharge variations (Vidon et al. 2010; Winterdahl et 

al. 2011). HS soils on the other hand make up a larger area through which water flows prior to 

reaching the near stream RZ. 

Landscape slope also greatly influences the amount of DOC exported from soils to 

surface waters. HS soils typically have shallower organic rich horizons and shorter residence 

times for water flow (Frost et al. 2006; Parry et al. 2015), which consequently decrease the 

quantity of DOC extracted from these soils. Hence, slope has been shown to be negatively 

correlated with DOC and P export (Frost et al. 2006; Parry et al. 2015; Sadro et al. 2012). 

Additionally, catchments with steeper slopes tend to have more organo-mineral soil, which is 

better able to retain DOC during rainfall (Parry et al. 2015). As a result of each of these factors, 

HS soils tend to contribute smaller quantities of DOC to surface waters when compared with RZ 

soils (Dick et al. 2015).   
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Hypotheses 

Considering competitive sorption and aggregation as potential mechanisms impacting 

changes in DOC, and considering the potential modulating effect of soils from different 

landscape positions, a set of experiments was designed to examine the influences of recovery on 

DOC leaching from soils. These experiments used two main approaches, a flow through analog 

to test competitive sorption (DOC vs. sulfate) and a set of batch experiments where solution 

chemistry (pH and IS) was altered. Changes in DOC quantity were monitored for soils from HS 

and RZ locations.  

It was hypothesized that 1) sulfate saturated soils have a greater affinity for DOC sorption 

than sulfate free control soils (competitive sorption effect), 2) low pH soil solution fosters 

aggregate-driven C retention in soils more than neutral pH soils (cation bridging effect), 3) high 

IS soil solution promotes aggregate formation and C retention in soils (IS effect on the diffuse 

double layer), and lastly that 4) DOC and associated nutrient release will vary with landscape 

position and will be greatest for RZ soils and lower for HS soils. 

 

Materials and Methods 

Field Site 

 The USGS Sleepers River watershed was selected for the project because this area has 

been studied intensively over several decades (Shanley et al. 2015). It is located in northeastern 

Vermont and consists of a set of nested catchments (Fig. 3b) including the well-studied sub-

watershed W-9 (Fig. 3a). Soils are established mostly over glacial till on slopes of varying 

degrees (3-16%). Typical for many forested systems in the NE, the site has been heavily 

impacted by acid deposition. 



 11 

 

 
 

Figure 3: a) The W-9 catchment area within b) Sleepers River Watershed. Modified from (Mayer et al. 
2010; Shanley et al. 2015) 

 
 

 

Sample Collection 

All samples were collected from W-9, which exhibits variably steep hillslopes of well 

drained inceptisols and flat RZs bordering the perennial streams with thick histosols. In some 

areas the RZs resemble waterlogged wetlands. Samples were taken from both HS and RZ soils to 

represent the typical pedologic units in this experiments. Three stream-flow transects were 

sampled in the Summer of 2016 by graduate students in the UVM Geology Department.  

Two subsamples from these soils were used for the first set of experiments (flow 

through). Both samples were collected from the top 15cm of RZ soils along a stream bank using 

a) b)
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a handheld bucket auger during the Summer of 2016. The samples were stored in plastic bags 

until the implementation of this project in February of 2017.  

For the second set of experiments (aqueous soil extracts) samples were collected from 

each of the three transects in the Fall of 2017 from both RZ and HS soils. At each transect, three 

RZ and three HS soils were collected, amounting to a total of eighteen soils, nine RZ and nine 

HS. Effort was made to avoid decaying trees, heavily rooted areas, and other sources of excess 

organic matter that were likely to include disproportionate quantities of organic matter not 

reflective of the ambient soil composition. Collection was conducted again using handheld 

bucket augers, and consisted of a depth range of 0-15cm. Immediately after collection, the 15cm 

soil column was mixed for homogeneity, and transported in sealed plastic bags in order to 

maintain field moisture. 

 

Experimental Setup 

1)   Flow Through Leachate 

 In order to simulate percolation of soil solution, a flow through experiment was designed 

in which simulated solution was fed through soil “packets” using suction (Fig. 4). These soil 

packets consisted of small quantities (~0.5g) of dried and sieved (2mm) soil contained between 

two 0.7µm combusted glass fiber filters. Each of the two soils were placed in duplicate onto the 

center of the bottom glass fiber filter, leaving approximately 2mm from the edge uncovered (Fig. 

4). The second glass fiber filter was then placed on top of the soil sample to form the soil packet, 

and the filter pod was secured around it.  

The primary function of the upper glass fiber filter was to prevent the addition of 

particles from the infiltrating solution and to disperse added solution across the surface area of 
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the soil packet. The bottom glass fiber filter was used to filter particulates from the soil out of the 

effluent solution.  

To test the effect of sulfate on the soil’s ability to take up DOC, soil was first saturated 

with sulfate (0.07 mM Na2SO4, stage 1) and then leached with leaf litter leachate as a DOC 

source (stage 2). In both stages influent and effluent solution were collected for analyses. In 

order to test for the effect of competitive sorption it was necessary to examine DOC sorption in 

comparable non-sulfate impacted soils. Hence corresponding blank experiments were prepared 

where soil was treated with Millipore double deionized (DDI) water instead of Na2SO4 solution 

(stage 1).  

Each infiltration consisted of the application of 15ml of experimental solution onto the 

top filter and used a small amount of suction to aid percolation. In order to allow for interaction 

time between the soil and infiltrating solution, the vacuum was turned off for one minute after 

the first three drops of solution escaped through the bottom of the soil packet into the lower 

chamber of the filter pod. After one minute the vacuum was reapplied until all solution had 

flowed through the soil packet. This step was repeated 5 times for a total of 75ml of infiltration. 

The leaf litter leachate was prepared from dried leaves collected from a typical northern 

hardwood forest at BREE EPSCoR sites in northern VT. All leaves were allowed to air dry under 

ambient laboratory conditions. 5 grams of leaf litter were added to 210 grams of DDI water and 

shaken on a reciprocal shaker at 180rpm for 20 minutes, a technique modified from Schreeg et 

al. (2012). Following shaking, leachate was filtered through a 0.7µm glass fiber filter, diluted 

with DDI water, and stored in glass amber bottles until experimentation. 
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Figure 4: Filter setup for sulfate flow through experiment. An open top soil packet is seen resting on the 
bottom section (effluent collection) of a Nalgene filter pod. 

 
 
 

2)   Batch Experimental Approach with Aqueous Soil Extracts  

Aqueous soil extract experimental setup 

Field moist soils were used for the batch experimental approach. In order to enable use of 

fixed solid/solution ratios in all experiments existing soil moisture was taken into account. For 

this, gravimetric soil water was determined on a subset of all soils. 

To prepare each soil for aqueous extraction, approximately 7g of each field moist soil 

was massed out in duplicate, one per treatment. Treatment solution was added respectively to 

reach a 1:5 soil to solution mass ratio, factoring in soil water already contained within the 

sample. Samples were shaken on low (180rpm) for one hour, and immediately afterward were 

centrifuged for thirty minutes at 3000rpm to remove solid components. Vacuum filtration 

through 0.45µm glass fiber filter was used to remove any remaining particulate matter, preparing 

the solution for analysis of dissolved components. Solution was transferred to and stored in 

amber glass bottles in order to prevent any light driven modifications in DOC.  
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Treatment solutions 

In order to test the effect of varying pH and IS on DOC mobilization from soils, a series 

of batch experiments was performed where soils were extracted with solutions of varying 

composition. To test the effect of pH on DOC release, two solutions of differing pH were used, 

sodium sulfate (Na2SO4) and H2SO4. Consistent IS was maintained by preparing the Na2SO4 at 

an IS of 0.005 mol/L and the H2SO4 at pH 4, brought to IS 0.005 mol/L with Na2SO4. For this set 

of batch experiments, one RZ and one HS soil was chosen from each of the three transects, 

amounting to six experimental soils, 3 RZ soils and 3 HS soils. 

In order to test for IS effects, solutions of varying IS were prepared. DDI water served as 

the low IS solution, while a H2SO4 - Na2SO4 (pH 4, IS 0.005 mol/L) solution served as the 

higher IS solution. The choice of H2SO4 in the preparation of this solution was intended to be 

representative of natural precipitation chemistry during historical acid rain events. For this set of 

batch experiments all eighteen soils were included, amounting to eighteen experimental soils, 9 

RZ soils and 9 HS soils. 

 

Sample and Data Analysis  

 A Shimadzu Total Organic C Analyzer was used to measure DOC and total N for all 

samples within 48 hours of sample preparation. Sulfate was measured via ion chromatography in 

the UVM Ross Lab. Total P was measured via Inductively Coupled Plasma (ICP) analysis. 

 One way, paired t-tests were conducted for acidity and IS analyses, while one-way equal 

variance t-tests were used to examine landscape driven differences. In order to understand the 

influences on nutrient concentrations, multiple regression was utilized to examine influences on 

N and P. Microsoft Excel was used for the production of graphical display. The Excel data 
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analysis extension was used for multiple regression model construction. An alpha value of 0.05 

was used to assess significance throughout the study.  

 

Results 

Flow Through Experiment on Competitive Sorption 

Sulfate saturation resulted in no major changes in DOC sorption vs. release in flow 

through experiments using soil packets. Compared to the average influent solution for soil 

replicate 1 (12.55±0.38 mg/L), DOC concentration was lower in the first stepwise effluent 

solution for both the sulfate treated soil (11.16±0.30 mg/L) and the sulfate free, DDI treated 

control (11.16±0.95 mg/L, Fig. 5). Concentrations stabilized at influent levels after the first 

infiltration step (Fig. 5). For replicate 2, the first stepwise effluent for the sulfate treated soils 

(9.36±0.31 mg/L) and the DDI treated control (8.85±0.86 mg/L) were at influent DOC 

concentration (9.32±0.52 mg/L), with effluent concentrations ranging slightly above influent 

levels after the first infiltration step (Fig. 5). 

Cumulative sorption of influent derived DOC (calculated as the cumulative sum of the 

difference between influent and effluent DOC) revealed no significant difference between sulfate 

saturated and control soil samples. However, significant differences were seen between the two 

soil samples (Fig. 6). Leachate of soil replicate 1 showed positive cumulative C sorption (i.e. 

DOC was effectively attenuated by this soil) while soil replicate 2 showed negative cumulative 

sorption (Fig. 6). For this soil (replicate 2) DOC effluent was, with the exception of the first 

infiltration step, consistently higher than effluent DOC concentration.  

Effluent sulfate concentrations where highest for the sulfate treated soils in the first 

infiltration step (0.05±0.01 mg/L) but approached influent leaf litter leachate sulfate 
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concentrations thereafter (Fig. 7). Sulfate concentrations remained at influent levels for both 

control soils, with the exception of a small peak at the second effluent solution from replicate 1 

(0.26 mg/L, Fig. 7).  

  
 

Figure 5: Effluent DOC concentration for all five stepwise infiltrations of both soils (replicates 1 and 2) 
by leaf litter leachate. Both sulfate impacted (Na2SO4 infiltrated) and control (DDI infiltrated) soils are 

included. Concentrations were not normalized to the amount of soil because DOC is present in leaf litter 
leachate. 

 

 
 

Figure 6: Cumulative sorption of DOC to RZ soil for sulfate impacted (Na2SO4) and control (DDI) 
samples. Measurements are taken after each of five stepwise flow-through infiltrations. 
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Figure 7: Effluent sulfate concentration for all five stepwise infiltrations of both soils (replicates 1 and 2) 
by leaf litter leachate. Both sulfate impacted (Na2SO4 infiltrated) and control (DDI infiltrated) soils are 

included (note that no duplicates were included for the control).  
 

Extraction - Aggregation vs. Dispersion in Batch Experiments 

In order to investigate the effect that pH and IS have on soil leachate DOC and nutrient 

concentrations, aqueous soil extracts of all eighteen samples were analyzed for DOC, N, and P. 

1)   pH 

pH (4 vs. 7) did not have a large effect on the amount of DOC leached from soils.  

Average extracted DOC was slightly lower for pH 7 extract (45.26±29.79 mg/kg) compared 

with pH 4 extract (49.05±30.84 mg/kg). The large variability in extractable DOC between 

samples is apparent in large error bars (Fig. 8), and is primarily a result of one sample with 

starkly higher DOC concentrations than the other samples. Regardless, a paired t-test revealed 

significance (p=0.046) for one tailed differences in DOC between treatments.  
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Figure 8: Average extracted DOC, N, and P concentrations by neutral (pH=7) and acidic (pH=4) solution 
[n=12 (DOC, N), n=10 (P)]. Stars indicate significant difference at a 0.05 alpha level. 

 

 Variability of N in soil extract was less pronounced and the difference between pH 7 

(6.17±1.51 mg/kg) and pH 4 (6.29±1.60 mg/kg) in average N content was not significant 

(p=0.419). Similarly, the difference between average P content in pH 7 (0.37±0.17 mg/kg) and 

pH 4 (0.36±0.10 mg/kg) was found not to be significant (p=0.460) for one tailed differences 

between treatments. Due to inaccuracies in ICP analysis, only 10 of 12 total effluent samples 

were used in P data calculations. Excluded sample data is included in the appendix. 

2)   Ionic Strength 

Variations in IS impacted DOC release more than nutrient (N, P) release. Variability in 

DOC was lower compared to the pH treatment. Mean DOC content in low IS extract (IS = 0.000 

mol/L, 33.37±13.30 mg/kg) was significantly higher than the high IS extract (IS=0.005 mol/L, 

23.25±9.75 mg/kg, p<0.00001, Fig 9a).  
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Figure 9: Average extracted DOC, N, and P concentrations by deionized (DDI water) and high IS 
(IS=0.005 mol/L) solution for a) all samples [n=36 (DOC, N), n=26 (P)], b) HS samples [n=18 (DOC, N), 
n=16 (P)], and c) RZ samples [n=18 (DOC, N), n=10 (P)]. Stars indicate significant difference at a 0.05 

alpha level. 
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(p=0.323) or P (p=0.458, Fig 9c). DOC was consistently lower in high IS treatments in both HS 

soils (p=0.002, Fig. 9b) and RZ soils (p=0.0001, Fig. 9c). Compared to pH treatments, N 

concentrations were lower relative to DOC concentrations. Due to inaccuracies in ICP analysis, 

only 26 of 36 total effluent samples were used in P data calculations. 

3)   Landscape Position 

Composition of extract varied by soil type (covariant with landscape position), however 

not for all analytes. Average DOC released from RZ soils was higher (29.36±11.61 mg/kg) than 

HS soils (27.26±13.01 mg/kg), however an equal variance t-test revealed one-tailed differences 

between soil types to not be significant (p=0.306). P similarly yielded insignificantly higher 

concentrations (p=0.092) in RZ extract (0.26±0.14 mg/kg) compared with HS extract 

(0.20±0.08 mg/kg). Differences in N however were large, resulting in significantly higher N in 

RZ extract (2.72±0.89 mg/kg) compared with that of HS (1.71±0.84 mg/kg, p=0.001).  

 

Figure 10: Average extracted DOC, N, and P concentrations from HS and RZ soils [n=36 (DOC, N), 
n=26 (P)]. Stars indicate significant difference at a 0.05 alpha level. 
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Given the greater concentrations of N and P in RZ extract, multiple regression analysis 

was run to determine predominate predictors of N in experimental soils. Relevant regression 

information can be found in the appendix. Considering DOC, treatment (IS), and topography 

(soil type) as predictors, multiple regression output identified a much stronger predictor model 

for N (p<0.00001) than for P (p=0.37). DOC and topography were both found to be significant 

predictors of N, while no predictors showed significance for P. Closer examination of 

topography as a predictor of N shows a lower C:N ratio in RZ soils compared with HS soils, 

regardless of treatment. This is also reflected by the presence of differences in N but not DOC 

seen between soil types (Fig. 10). The C:N ratio appeared also to be lower in high IS solution 

compared with low IS solution, which is reflected by the absence of differences in N between IS 

treatments where differences in DOC are seen (Fig. 9a). These ratio differences are less extreme 

than those between soil types, as treatment was not found to be a significant predictor for N 

(p=0.12) in IS regression analysis, while topography was significant (p=0.0001). 

 

Discussion 

The original hypotheses state that changes in soil solution chemistry have profound 

effects on DOC and nutrient release from soils through mechanisms of competitive sorption and 

aggregation vs. dispersion. Indeed, some of these mechanisms can explain the behavior of 

solutes in these experiments, however, the response is more varied than was expected. In the 

following section each mechanism is discussed, the role of landscape position is commented on 

as a modulating factor, and the results are put into a broader context. 
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The Role of Competitive Sorption in Flow Through Experiments 

It was hypothesized that sulfate saturated soils have a greater affinity for DOC sorption 

than sulfate free control soils. It was hence expected that in these experiments DOC would 

decrease while SO42- in sulfate impacted soil leachate would increase (hypothesis 1). It was 

observed that in both replicate soils DOC concentrations were low in the first effluent, while 

SO42- concentrations were high (Fig. 5 & 7). This suggests that DOC from leaf litter is either 

diluted by solution already present in the soils (from either DDI or Na2SO4 treatment) or that 

DOC is indeed sorbed on soil sorption sites in this first step. After this first infiltration, DOC and 

sulfate concentrations approached that of the infiltration solution, indicating that whichever 

process occurred was completed rapidly. 

However, no difference existed between the sulfate free control and the sulfate treated 

soils, providing little evidence of competitive sorption between DOC and sulfate in this 

experiment. This is in contrast with other studies that have clearly shown evidence of 

competition between DOC and sulfate (Gobran et al. 1998) and decreases in soil pore water 

DOC due to sulfate additions (Seifert-Monson et al. 2014). In one of these studies larger 

quantities of soils and multiple soil horizons were used (Gobran et al. 1998), while in another 

sulfate amendments were added in situ and soil pore water was collected directly from the 

amended field site (Seifert-Monson et al. 2014). 

pH effects were reported by Gobran et al. (1998) as a possible reason for the absence of 

competitive sorption. Their results indicate that soil retention of sulfate is increased at lower pH 

(<4) while DOC retention is increased at higher pH (>4). Both solutions in the soil packet flow 

through analysis had a neutral pH where, according to this logic, DOC outcompetes sulfate for 

binding sites. Were this the case, the initial sulfate saturation would have sorbed primarily to 
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open binding sites, not those already occupied by DOC, and the later infiltration of DOC would 

have saturated those sites in the same sorbed concentrations as open sites (DDI control). In this 

case, no differences in DOC sorption would be seen between treatments, as was seen in the 

results of this study.  

Another reason for the differing results between this study and previous work could be 

the experimental setup. Only a small amount of soil with relatively high amounts of liquid was 

used which presumably led to the fast saturation of soil by influent DOC. This limits the ability 

to examine differences in sorption patterns that may have been visible were there a greater ratio 

of soil mass to influent solution. Hence, adapting this experiment to increase the quantity of soil 

is warranted, possibly via the use of column infiltrations, as this would make minute differences 

in sorption and leaching patterns clearer. 

Another factor could be the small amount of time allowed for soil-solution interaction 

during the sorption step. In previous experiments sulfate sorption was achieved either by 

sequentially infiltrating multiple horizons (Gobran et al. 1998) or amending in situ soils (Seifert-

Monson et al. 2014). In both cases a much greater interaction time was allowed between 

infiltrating solution and soil. It is clear that more work is necessary in order to confirm the 

influence of sulfate-DOC competitive sorption on soil DOC release. 

 

The Role of Aggregations vs. Dispersion in Batch Experiments 

It was hypothesized that the cation bridging effect leads to aggregate-driven C retention 

in soils at low pH compared with soils at neutral pH, and it was predicted that the greatest DOC 

and associated nutrient release would be seen at neutral pH (hypothesis 2). In opposition to the 

hypothesis, slightly higher DOC concentrations were seen in pH 4 solutions compared with pH 7 
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(Fig. 8). However, confident extrapolation from these results is limited due to the large variation 

in concentration between samples within treatments, the small sample size (n=12), and the fringe 

significance level (p=0.046). Furthermore, no difference was found between nutrient 

concentrations. This may be in part due to the tendency of nutrient concentrations to correlate 

with DOC, and differences between DOC were minimal.  

These results suggest that aggregation through proton driven cation bridging is not a 

likely mechanism for DOC release in these soils. This is supported by a previous soil column 

flow through experiment conducted by Munch et al. (2002), who found influent solution pH 

differences (pH 4 vs. pH 5.8) to have little influence on DOC release from soils. However, other 

studies have shown pH to greatly influence DOC release from soils via dissolution of organic 

matter, rather than via aggregate dispersion. Specifically, pH was found to be a key factor 

determining organic matter solubility under reducing conditions, with more DOC being released 

at pH 7.4 vs. 5.5 (Grybos et al. 2009). It therefore is still necessary to consider pH influences 

when assessing DOC release from soils. 

It was also hypothesized that high IS soil solution promotes aggregate formation and C 

retention in soils through compressing the diffuse double layer, leading to aggregation 

(hypothesis 3). In this case it was expected that a greater release of DOC and associated nutrients 

would be seen at low vs. high IS. As hypothesized, low IS extracts yielded significantly higher 

DOC concentrations across all samples, and higher N and P concentrations for HS samples (Fig. 

9). The lack of significance between N concentrations under different IS treatments in RZ 

samples can likely be attributed to the variation in N by soil type (Fig. 10) confounding IS driven 

N differences in RZ soils (Fig. 9c). Such variation may also explain the same phenomenon for P 

concentrations, however less P variability was found between soil types (Fig. 10). Low IS 
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solutions simulate rain and soil solution recovering from acid deposition, hence these results 

could suggest that recovery from acidification may allow more DOC and associated nutrients to 

be released from soils, although with C:N:P ratios varying according to soil type. 

Regarding DOC, these results are in agreement with a study by Hruška et al. (2009) 

which found that increased stream DOC in a European catchment was driven by reductions in IS 

rather than pH, however they did not provide an explanation for this observation. In their soil 

column flow through experiment Munch et al. (2002) also confirmed that increases in IS 

decreased effluent DOC, however they express uncertainty regarding the relative influence of 

cation bridging vs. diffuse double layer effects, and do not look further into the specific 

mechanism. 

Our understanding of the role of the diffuse double layer in aggregation indicates that 

aggregation is likely also influenced by the decrease in deposition IS, where aggregates are less 

likely to be maintained in low IS solution (Moore & Reynolds 1997). Given the tendency of soil 

aggregates to physically trap and protect OM, aggregate breakup likely serves as a mechanism 

controlling DOC and possibly nutrient release in light of recent low deposition IS. In HS soils 

both P and N did correspond with changes in DOC between IS strength treatments, which could 

indicate that this aggregate dispersion driven mechanism is likely to increase surface water 

nutrient loading along with DOC. Such an effect might be of importance because increased 

nutrient loading may lead to changes in productivity and consequent trophic structure. However, 

as HS soils tend to contribute less DOC to surface waters relative to RZ soils (Dick et al. 2015; 

Frost et al. 2006; Parry et al. 2015) and these results showed greater differences in nutrient 

release between IS treatments in HS soils compared with RZ soils, nutrient loading increases 

may be limited. 
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It was additionally hypothesized that DOC and associated nutrient release will vary with 

landscape position and will be greatest for RZ soils and lower for HS soils (hypothesis 4). 

Interestingly, only N showed significant differences by soil type with higher N in RZ extract. 

This difference in N and C:N ratio is likely a result of the tendency of the riparian zone to 

remove nutrients from upland sources (Vidon et al. 2010). Microbial activity may also differ 

between HS and RZ soils. Breakdown rates of C compounds can be limited by anoxia in RZ soils 

due to frequent saturation of these near stream soils. Microbial breakdown of C compounds often 

converts C and nutrients to more bioavailable forms (Gougoulias et al. 2014), which may explain 

the higher values for N and the lower C:N ratio seen in RZ soils compared with HS soils.  

 

Continuing Research – Is there a Link between these Results and Soil Processes? 

 The experiments in this study were designed to test a specific set of hypotheses related to 

two main mechanisms that could explain the release of DOC from soils when precipitation and 

soil solution chemistry change. However, in order to fully understand the mechanisms 

contributing to changes in surface water DOC, a direct connection must be drawn between this 

series of experiments and soil processes. For example, in order to determine if changes in IS 

really lead to aggregate dispersion, aggregates have to be observed. This thesis is part of a larger 

research project that examined change in aggregate size with particle size analysis as a function 

of IS. Results show that aggregates after low IS treatment effectively decrease in size and release 

more DOC (Cincotta et al. in prep). This same project investigated the characteristics of DOC 

released through aggregate breakup because DOC and nutrient bioavailability (assessed through 

incubations and using spectral methods) have implications for productivity and DOC variability. 

These results are currently written up for a publication. 
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Conclusions and Global Relevance 

IS was the strongest determining factor of DOC release, supporting the hypothesis that 

DOC release is highest at low IS. While DOC release differences were identified at different pH 

levels, the results were in opposition to the hypothesis that DOC release would be highest in 

higher pH soils. Moreover, any differences in DOC release between pH treatments cannot 

confidently be confirmed, hence the significance of aggregation in acidic solution remains 

unconfirmed. The occurrence of competitive sorption additionally could not be confirmed, 

because DOC effluent patterns were identical for sulfate impacted and control (DDI) soils. These 

results prevent the confirmation of the first hypothesis, that DOC-sulfate competitive sorption 

will result in higher DOC effluent concentrations late in the experiment. However, further 

analysis of competitive sorption may reveal more nuanced DOC-sulfate interactions that were 

not apparent due to inadequate soil mass and solution pH above that seen during acid deposition 

recovery.  

The significance of IS in determining DOC release and the connection between IS and 

the diffuse double layer enhance our understanding of the primary mechanisms responsible for 

the widespread increase in DOC which have occurred in recent decades. Isolating the 

mechanisms controlling DOC release from soils will allow us to better predict how surface 

waters may be impacted by recovery from acid deposition. As the diffuse double layer is 

dependent on negatively charged particle surfaces and pore water IS, knowledge of watershed 

soil composition can potentially allow us to interpret how changes in IS may influence aggregate 

breakup and consequent DOC release. Such an understanding is particularly relevant in areas still 

recovering from acid deposition. 
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Implications 

Considering aggregation as the primary mechanism controlling recent increases in 

surface water DOC, predictions can be made regarding the future trend of surface water DOC 

concentration. The reduction of IS in precipitation is a result of a recovery from years of 

atmospheric pollution, and as such should approach an equilibrium state. As a result, continued 

increases of surface water DOC in the long term are unlikely. Rather, DOC concentrations 

should reach a new equilibrium state in response to stabilizing deposition IS. Trophic structure 

changes dependent on DOC would theoretically follow this pattern, stabilizing in response to 

DOC reaching an equilibrium state.  

This successive stabilization however would only follow if atmospheric deposition 

changes were the dominant driver of changing DOC release from soils. Other factors, including 

increasing atmospheric temperatures and storm event frequency, have the potential to alter DOC 

release quantities as well, and would not be predicted to level out in the same manner as 

deposition chemistry. 

 

Future Work 

More research is necessary however to support the results of this study before they can be 

applied at a broad scale. The results of this study may be system specific, particularly as they 

indicate that soil type influences DOC and nutrient release, implying that future results will vary 

by location and soil type. Additionally, a small set of samples was used which further limits the 

accuracy of the study.  

It is also important to continue research efforts related directly to this study, as our 

understanding of the observed DOC release mechanisms is still incomplete, and consequences of 
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recovery are related to both DOC concentrations and components. Presently changing surface 

water DOC concentrations have influence over water quality via nutrient inputs and light 

attenuation. Hence, efforts are being made in the UVM Geology Department to further 

understand the specifics of DOC release mechanisms in light of recovery from acid deposition.  
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Appendix 
 
 
 
 

 
 

Table 1: DOC, N, and P values (mg/kg soil) for all samples included in the pH experiment. Red shading 
indicates inaccurate values produced by ICP analysis; any sample with inaccuracy and its corresponding 

paired sample were not included in data analysis. 
 
 
 
 

 
 

Table 1: DOC, N, and P values (mg/kg soil) for all samples included in the IS experiment. Red shading 
indicates inaccurate values produced by ICP analysis; any sample with inaccuracy and its corresponding 

paired sample were not included in data analysis. 
 
 
 
 

 
 

Table 2: Multiple regression output with Response=N, Predictors=[DOC concentration, Topography, 
Treatment], where treatment indicate low vs. high IS, and topography indicates RZ vs. HS soils.  
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Table 3: Multiple regression output with Response=P, Predictors=[DOC concentration, Topography, 

Treatment], where treatment indicate low vs. high IS, and topography indicates RZ vs. HS soils. 
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