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[1] Understanding the processes controlling the transfer and chemical composition of
dissolved organic carbon (DOC) in freshwater systems is crucial to understanding the
carbon cycle and the effects of DOC on water quality. Previous studies have identified
watershed-scale controls on bulk DOC flux and concentration among small basins but
fewer studies have explored controls among large basins or simultaneously considered the
chemical composition of DOC. Because the chemical character of DOC drives riverine
biogeochemical processes such as metabolism and photodegradation, accounting for
chemical character in watershed-scale studies will improve the way bulk DOC variability
in rivers is interpreted. We analyzed DOC quantity and chemical character near the mouths
of 17 large North American rivers, primarily between 2008 and 2010, and identified
watershed characteristics that controlled variability. We quantified DOC chemical
character using both specific ultraviolet absorbance at 254 nm (SUVA254) and XAD-resin
fractionation. Mean DOC concentration ranged from 2.1 to 47mgCL�1 and mean
SUVA254 ranged from 1.3 to 4.7 LmgC�1m�1. We found a significant positive correlation
between basin wetland cover and both bulk DOC concentration (R2 = 0.78; p< 0.0001) and
SUVA254 (R

2 = 0.91; p< 0.0001), while other land use characteristics were not correlated.
The strong wetland relationship with bulk DOC concentration is similar to that found by
others in small headwater catchments. However, two watersheds with extremely long
surface water residence times, the Colorado and St. Lawrence, diverged from this wetland
relationship. These results suggest that the role of riverine processes in altering the
terrestrial DOC signal at the annual scale was minimal except in river systems with long
surface water residence times. However, synoptic DOC sampling of both quantity and
character throughout river networks will be needed to more rigorously test this finding. The
inclusion of DOC chemical character will be vital to achieving a more complete
understanding of bulk DOC dynamics in large river systems.

Citation: Hanley, K. W., W. M. Wollheim, J. Salisbury, T. Huntington, and G. Aiken (2013), Controls on dissolved
organic carbon quantity and chemical character in temperate rivers of North America, Global Biogeochem. Cycles, 27,
492–504, doi:10.1002/gbc.20044.

1. Introduction

[2] Dissolved organic carbon (DOC) quantity and chemi-
cal character in rivers and streams play key biogeochemical
roles influencing drinking water quality, heavy metal

transport, stream ecosystem processes, coastal eutrophica-
tion, and the global carbon cycle [Aiken et al., 2011; Buffam
et al., 2001; Cole et al., 2007; Frey and Smith, 2005;
Gattuso et al., 1998; Lehtoranta et al., 2009; Sholkovitz,
1976; Singer, 1999]. Large rivers are particularly important
because they are a major source of material to the coastal
ocean and they indicate dynamics across broad regions.
However, most previous basin-scale riverine organic carbon
studies have focused either on small or individual water-
sheds, with many finding that bulk DOC variability is related
to basin-scale characteristics such as wetland cover and
runoff [Buffam et al., 2007; Chorover and Amistadi, 2001;
Clair and Ehrman, 1996; Creed et al., 2003; Dalzell et al.,
2007; Gergel et al., 1999; Mulholland and Kuenzler, 1979;
Raymond and Hopkinson, 2003]. We sought to address
whether the processes that appear to control DOC quantity
in small basins also scale to large and continental-scale sys-
tems. In addition, current global land-to-ocean carbon flux
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models continue to rely on DOC concentration data of ques-
tionable quality, often collected more than 30 years ago
[Alexander et al., 1998; Harrison et al., 2005; Lauerwald
et al., 2012; Meybeck and Ragu, 1996; Seitzinger et al.,
2005]. Here we present updated estimates of DOC concen-
tration and flux from 17 large rivers in North America that
may be used in future modeling efforts.
[3] Interpreting variability in the quantity of DOC and

predicting its impact in natural systems are difficult without
also taking into account its chemical character. The chemical
character of DOC is largely determined by its source mate-
rial and past biogeochemical transformations [Schlesinger,
1997] and as a result, DOC is made up of thousands of dif-
ferent molecules with a broad spectrum of characteristics
and reactivity [Maurice et al., 2002]. Knowledge of DOC
chemical character can improve understanding of both the
sources and fate of DOC in river systems. In addition, the
chemical makeup of DOC in aquatic systems influences
the transport and bioavailability of heavy metals [Dittman
et al., 2010] and anthropogenic organic compounds [Neale
et al., 2011]. The chemical character of DOC also
determines how it interacts with natural and engineered
nanoparticles [Aiken et al., 2011] and impacts the production
of harmful byproducts of chlorine disinfection during drink-
ing water sanitization [Singer, 1999]. Therefore, a more
complete understanding of DOC chemical character in rivers
and streams will aid in our interpretation of bulk DOC vari-
ability and its influences on water quality.
[4] Some previous large and continental-scale studies

have explored controls on DOC quantity and chemical
character, though each had limitations. Aitkenhead and
McDowell [2000] found a strong link between soil C:N
and DOC flux at the annual scale among biomes
(R2 = 0.992; p< 0.0001). Despite the strength of this rela-
tionship, when it is applied to predicting DOC flux from
individual watersheds, particularly large ones, its utility is
limited by the necessity of geospatially extensive soil C:N
data. Frost et al. [2006] characterized DOC concentration
and chemical character throughout a single large river net-
work. They found that concentration was related to a range
of landscape variables including percent wetland cover and
the total drainage area of individual sub-catchments. They
also found that the molecular weight of DOC and its aroma-
ticity were related to the percent lake cover and percent wet-
land cover of individual sub-catchments. Shih et al. [2010]
developed a continental-scale total organic carbon flux
model based on a variety of watershed parameters using
the SPARROW modeling framework [Alexander et al.,
2000]. They found that in-stream processes were significant
in controlling both the quantity and inferred sources of
DOC. However, implicit in their model was the assumption
that all organic carbon in a reach, irrespective of chemical
character, was remineralized at the same rate. This type of
model simplification may be adequate to predict bulk
organic carbon quantity, but it does not reflect important
complexities in the underlying biogeochemical processes
and makes the interpretation of model predictions problem-
atic. By not taking into account the spectrum of organic mat-
ter chemical character among different sources, the authors
likely overestimated the contribution to basin exports
by more easily remineralized autochthonous sources and
underestimated the more refractory allochthonous sources

[Benner, 2003; del Giorgio and Davis, 2003; del Giorgio
and Pace, 2008]. Unfortunately, few comparative large-
basin DOC studies have been conducted that also incorpo-
rate chemical character. Here we update large-river DOC
flux estimates and improve understanding of the processes
underlying DOC variability in freshwater systems by exam-
ining DOC quantity together with chemical character among
17 large rivers throughout temperate North America. We
address two primary research questions:
[5] 1. Are the biogeochemical processes underlying the

observed relationships between watershed-scale characteris-
tics and DOC quantity among small rivers also important
among large and continental-scale systems?
[6] 2. Can watershed-scale characteristics explain the vari-

ability of DOC chemical character among large river systems?
[7] Answers to these questions will also help to clarify the

role of in-stream processes accumulated at network scales in
altering the quantity and chemical character of DOC trans-
ferred from the continents to the oceans.

2. Methods

2.1. Study Sites

[8] Our study sites included 17 large watersheds from
across a wide range of biomes in North America (Figure 1
and Table 1), 11 of which are monitored by the U.S. Geolog-
ical Survey’s National Stream Quality Accounting Network
(NASQAN; http://water.usgs.gov/nasqan/). Basins were
selected based on two criteria: large drainage areas
(>1000 km2) and complete daily discharge records available
for the sampling period. NASQAN locations in Alaska
(Yukon River) were excluded to eliminate the confounding
influence of permafrost from the analysis. The primary
sampling period (2008–2010) occurred during years of
average temperature and only slightly elevated precipita-
tion [NOAA-NCDC, 2012]. Site information, including
geospatial coordinates, contributing drainage area, and
most discharge data, was acquired through the USGSNational
Water Information System (NWIS; http://waterdata.usgs.gov/
nwis/). Discharge data for the Rio Grande were obtained from
the International Boundary and Water Commission [IBWC,
2010]. In all cases, runoff was calculated as discharge divided
by drainage area.
[9] For several rivers, daily discharge data were available

only at a nearby USGS gauging station located on the same
main stem. In these cases, discharge (Q) was scaled by the
percent difference in upstream drainage areas (A) for the
nearby and the NASQAN stations:

QNASQAN ¼ Qnearby ANASQAN=Anearby

� �
(1)

[10] Very little scaling was done in any case; the Altamaha,
Potomac, Androscoggin, and Mobile Rivers were each scaled
by 5% or less. The Penobscot River was scaled by just under
15%, but the suitability of this particular assumption was
explicitly addressed by Hodgkins [1999].
[11] We used ESRI ArcGIS 9.3 to extract land cover and

mean annual temperature from the National Hydrography
Dataset (NHDPlus) [USGS, 2006] and spatially joined our
gauging stations with the NHDPlus topological stream net-
work. Each gauging station’s corresponding stream reach
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record was joined with cumulative upstream percent land
covers from the National Land Cover Database (NLCD)
[Homer et al., 2004], including agricultural, forest, grass-
land, shrubland, urban, and wetland land cover types.
Stream reach records were also joined with cumulative-
upstream mean basin air-temperature [Daly and Taylor,
1998]. Both land cover and air-temperature records were
available as a part of the NHDPlus. Unfortunately, the
NHDPlus topological network did not correctly model the
flow path of the St. Lawrence River, and thus land cover
data were unavailable. Instead we used a St. Lawrence
watershed polygon provided by NASQAN [Butman et al.,
2012] to extract land cover data from the Commission
for Environmental Cooperation’s North American Environ-
mental Atlas [NRCan/CCRS et al., 2010]. We used
BasinDelineator (v2.009), a tool provided as a part of the
NHDPlus, to build watershed polygons for each of the other
gauging stations. These polygons were then used to extract,
for each basin, the percent cover of reservoirs, small lakes,
and large lakes from the Global Reservoir and Dam database
[Lehner et al., 2011] and the Global Lake and Wetland
Database [Lehner and Doll, 2004].

2.2. Quantity and Chemical Character

[12] Stations were sampled approximately monthly over 2
to 4 year periods between 2002 and 2010 by the U.S. Geo-
logical Survey, with most samples taken between 2008 and
2010 (Table 2). Samples were either filtered in the field
using 0.45 mm Gelman capsule filters or shipped on ice to
the U.S. Geological Survey in Boulder, Colorado, within
24 h of collection and immediately filtered using pre-
combusted Whatman GF/F filters of 0.7 mm nominal pore
size. DOC concentration was measured utilizing the plati-
num catalyzed persulfate wet oxidation method on an O.I.
Analytical Model 700 TOC Analyzer™ using established
methods [Aiken et al., 1992]. Reported values are the aver-
ages of duplicate analyses. Standard deviation for the DOC
measurement was determined to be �0.2mgC L�1. We also

measured DOC chemical character in terms of specific ultra-
violet absorbance (SUVA254), which is defined as a sam-
ple’s spectral absorbance at 254 nm (UVA) normalized to
its DOC concentration. All samples were analyzed for
UVA using a Hewlett-Packard photo-diode array spectro-
photometer, and SUVA254 was calculated by dividing
UVA by DOC concentration. We chose SUVA254 as the pri-
mary measure of chemical character because it is a good
indicator of DOC aromaticity [Weishaar et al., 2003].
[13] The proportion of bulk DOC as hydrophobic organic

acids (HPOA) was determined using XAD-resin fractionation
analysis following Aiken et al. [1992]. In brief, samples were
acidified to pH 2 using HCl and passed through a column
of XAD-8 resin. The HPOA fraction was retained on the
XAD-8 resin and then back eluted with 0.1MNaOH. The con-
centration of HPOAwas determined by direct measurement of
the eluent and is presented here as a fraction of bulk DOC.
XAD fractionation is useful because it allows us to directly
identify the hydrophobic and generally more aromatic and
allochthonous compounds in the bulk DOC pool such as fulvic
and humic acids [Aiken et al., 1979; Aiken et al., 1992].
[14] For each station daily values and the flow-weighted

overall-mean for the entire sampling period (henceforth sim-
ply referred to as “mean”) for DOC concentration and
SUVA254 were estimated using LoadRunner, a graphical
front-end to the USGS application LOADEST [Booth
et al., 2007; Runkel et al., 2004]. LOADEST incorporates
daily discharge, seasonality, and measured constituent data
to parameterize a multiple-regression model that allows a
continuous time series to be estimated from discrete mea-
surements. Root mean square error in mg C L�1 (RMSE)
for each basin was calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

DOC½ �modeled� DOC½ �measuredð Þ2
n

s
(2)

where [DOC] is DOC concentration in mg C L�1 and n is
the number of observations. Annual discharge-weighted

Figure 1. Map showing the drainage basins and sampling locations for 17 North American rivers.
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concentration means were automatically calculated from the
daily modeled values, and fluxes were simply the sum of
daily concentrations multiplied by daily discharge over the
time period of interest. Mean concentration, flux, and yield
were calculated by taking the average of the annual means
for each basin. In order to compare among watersheds, we
divided flux by basin area to obtain DOC yield.

3. Results

3.1. Basin Attributes and Mean DOC Characteristics

[15] Basins ranged in drainage area from 1800 km2 for the
St. Mary’s River in Florida to 2,930,000 km2 for the
Mississippi River in Louisiana (Table 1). Compared to the
Mississippi, the St. Mary’s River basin is quite small, but
it is still much larger than most basins found in comparative
riverine DOC studies. In total, the watersheds for all 17
rivers accounted for more than 70% of the land area of the
contiguous United States and 26% of the land area of North

America. The most northerly river was the Columbia in
Oregon with a mean watershed latitude of 46.2�N, though
the coldest watershed belonged to the Kennebec River in
Maine, with a mean annual temperature of 4.3�C. The most
southerly and the warmest was the Santa Fe River in Florida,
with a mean watershed latitude of 29.9�N and a mean annual
temperature of 20.1�C. Mean runoff during each basin’s
sampling period ranged from 0.11 cm/yr for the Rio Grande
in Texas to 88.00 cm/yr for the Androscoggin River in
Maine (Table 1).
[16] Wetland cover ranged from 0.1% for the Rio Grande

in Texas to 41.6% for the St. Mary’s River (Table 3).
Agricultural land cover ranged from 1.5% for the Penobscot
River in Maine to 42.3% for the Mississippi River. The Rio
Grande had the greatest grassland cover, at 34.2%, while
several basins possessed 0.0% grassland cover, including
nearly all eastern basins. The Rio Grande was the least for-
ested, at 11.3% cover, and was tied with the Colorado River
in Arizona for the least urban, at 0.5%. The most forested

Table 3. Table Showing Various Land Cover Attributes in Percent Basin Covera

River Name Agricultural (ag) Forest Grassland (grass) Shrubland (shrub) Urban Wetland (wet) Reservoir Lake

Penobscot River 1.5 89.3 0.0 0.3 0.6 5.5 2.3 5.3
Kennebec River 6.0 85.0 0.0 0.4 1.2 3.9 3.8 5.9
Androscoggin River 5.6 87.7 0.0 0.2 1.7 3.5 2.3 4.1
Susquehanna River 28.7 67.4 0.0 0.0 2.6 0.5 0.1 0.7
Potomac River 34.7 61.2 0.0 0.0 2.8 0.5 0.0 0.3
Edisto River 32.3 45.4 0.0 0.0 1.6 15.3 0.0 0.0
Altamaha River 24.0 58.4 0.0 0.0 3.5 8.3 0.4 0.6
St. Mary’s River 2.0 46.1 1.2 0.2 1.5 41.6 0.0 0.2
Santa Fe River 16.9 46.4 11.2 1.5 2.4 16.0 0.0 1.5
Mobile River 18.5 70.8 0.0 0.0 1.8 6.4 0.5 0.9
St. Lawrence River 18.2 37.7 1.9 0.4 3.1 3.9 3.5 34.3
Mississippi River 42.3 23.0 25.2 4.7 1.7 2.5 0.5 0.9
Rio Grande 1.8 11.3 34.2 50.1 0.5 0.1 0.2 0.1
Colorado River 2.1 23.7 12.3 57.1 0.5 0.2 0.3 0.2
San Joaquin River 16.9 36.3 15.3 16.2 2.2 0.8 0.6 0.6
Sacramento River 9.9 54.6 15.2 14.5 1.7 0.7 0.9 0.7
Columbia River 12.9 42.3 10.4 29.7 0.8 0.4 0.7 0.6

aCorresponding variables in LOADEST models (Table 4) are shown in parenthesis.

Table 2. Table Showing LOADEST Model Informationa

River Name
DOC
RMSE

SUVA
RMSE

HPOA
RMSEn Year Begin Year End R2

(mg C L�1)
NS R2

(L mg C�1m�1)
NS R2

(%[DOC])
NS

Penobscot River 61 2004 2008 0.97 1.8 0.60 0.99 0.2 0.39 ND ND ND
Kennebec River 12 2006 2007 0.99 0.5 0.75 0.99 0.1 0.43 ND ND ND
Androscoggin River 12 2006 2007 0.99 0.4 0.81 0.99 0.1 0.58 ND ND ND
Susquehanna River 22 2008 2010 0.94 0.4 0.39 0.96 0.3 0.09 0.90 0.04 0.18
Potomac River 21 2008 2010 0.99 0.3 0.80 0.99 0.1 0.81 0.99 0.03 0.92
Edisto River 18 2005 2008 0.96 1.6 0.81 0.99 0.2 0.28 0.96 0.04 0.81
Altamaha River 19 2008 2009 0.99 1.1 0.67 0.99 0.3 0.66 0.90 0.11 �0.51
St. Mary’s River 31 2002 2006 0.99 8.5 0.68 0.99 0.3 0.17 0.98 0.04 0.67
Santa Fe River 29 2002 2004 0.93 5.3 0.78 0.98 0.4 0.79 0.93 0.07 0.62
Mobile River 25 2008 2010 0.98 0.6 0.71 0.99 0.2 0.72 0.98 0.04 0.36
St. Lawrence River 16 2008 2009 0.93 0.1 0.80 0.74 0.1 0.53 0.68 0.02 0.36
Mississippi River 23 2008 2010 0.94 0.3 0.50 0.99 0.1 0.71 0.98 0.03 0.80
Rio Grande 21 2008 2009 0.99 0.3 0.44 0.98 0.2 0.32 0.98 0.02 0.30
Colorado River 27 2008 2010 0.92 0.4 0.17 0.96 0.1 0.54 0.99 0.03 0.37
San Joaquin River 23 2008 2010 0.90 0.8 0.48 0.98 0.2 0.27 0.81 0.06 0.21
Sacramento River 24 2008 2010 0.95 0.4 0.80 0.97 0.2 0.82 0.97 0.05 0.95
Columbia River 18 2009 2010 0.97 0.2 0.66 0.96 0.3 0.61 0.94 0.03 0.60

aR2, Nash-Sutcliffe coefficient, and root mean square error are shown for dissolved organic carbon (DOC), specific ultraviolet absorption at 254 nm
(SUVA254) and hydrophobic organic acids (HPOA). ND indicates that no data were available.
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and the most urban were the Penobscot River at 89.3%
and the Altamaha River at 3.5%, respectively. Shrubland
ranged from 0.0% for the Mobile, Susquehanna, Potomac,
Edisto, and Altamaha Rivers to 57.1% for the Colorado
River. For reservoirs, the Potomac, Edisto, St. Mary’s,
and Santa Fe Rivers were least covered at 0.0% and the
Kennebec River was the most covered at 3.8%. Finally, lake
cover ranged from 0.0% for the Edisto River to 34.3% for the
St. Lawrence River.

[17] Mean DOC concentrations from LOADEST ranged
from 2.1mg C L�1 for the Columbia River in Oregon to
46.8mg C L�1 for the St. Mary’s River, while DOC load
ranged from 9200 kg C d�1 for the Rio Grande to
5,260,000 kg C d�1 for the Mississippi River. DOC yield
ranged from 0.01 g C yr�1m�2 for the Colorado River in
Arizona and the Rio Grande, to 18.5 g C yr�1m�2 for the St.
Mary’s River. Mean SUVA254, ranged from 1.3Lmg C�1m�1

for the St. Lawrence River to 4.7Lmg C�1m�1 for the St.
Mary’s River. Mean HPOA fraction ranged from 0.29 for the
St. Lawrence River to 0.71 for the Santa Fe River in Florida,
while HPOA load ranged from 3180 kg C d�1 for the Rio
Grande to 2,050,000 kg C d�1 for the Mississippi River. Total
DOC and HPOA flux for all basins studied was 3.80 TgC yr�1

and 1.34 Tg C yr�1, respectively (Table 1).
[18] All LOADEST models used to estimate mean DOC

concentration, SUVA254, and HPOA concentration were
significant to the level of a= 0.01, with p< 0.0001 in all
cases except the SUVA254 and HPOA models for the St.
Lawrence River where p = 0.0008 and 0.002, respectively.
For DOC, R2 ranged from 0.90 to 0.99 and for SUVA254,

from 0.74 to 0.99. Nash-Sutcliffe coefficients [Nash and
Sutcliffe, 1970] ranged from 0.17 to 0.81 for DOC and from
0.09 to 0.82 for SUVA254. For HPOA, R

2 ranged from 0.68
to 0.99 and Nash-Sutcliffe coefficients ranged from �0.51
(for the Altamaha River in Georgia) to 0.95. The positive
Nash-Sutcliffe values presented here indicate that with the
exception of the Altamaha HPOA model, all LOADEST
models predicted measured values with more accuracy than
a simple mean (Table 2).

3.2. DOC Quantity Patterns

[19] We found a strong positive correlation between
percent wetland cover (LW) and mean DOC concentration
in mg C L�1 (R2 = 0.93, p< 0.0001; Figure 2a and Table 3).
However, the slope of this relationship was highly skewed
by the wetland-dominated St. Mary’s River. When we
excluded the St. Mary’s as an outlier, the model better fulfilled
the assumptions of a linear regression and the DOC

Figure 2. Mean dissolved organic carbon (DOC) concentra-
tion versus percent wetland cover (a) for all 17 sites,
represented by a dashed line and (b) excluding the St. Mary’s
River, represented by a solid black line. The St. Mary’s River
and the St. Lawrence River are highlighted in green. Error bars
represent root mean square error for the LOADESTmodel and
are smaller than the size of the data point in some cases.

Table 4. Table Showing Relationships Between Both Dissolved Organic Carbon (DOC) Concentration and Specific Ultraviolet Absorption at
254 nm (SUVA254) and a Variety of Land Cover Attributes (Table 3)a

Predictor Land Cover Versus DOC R2 p-Value Land Cover Versus SUVA254 R2 p-Value

Wetland [DOC] = 0.590�wet + 3.278 0.78 <0.0001 SUVA=0.440� log(wet) + 2.884 0.91 <0.0001
Agricultural [DOC] = 0.004� ag + 5.733 0.00 0.954 SUVA=�0.052� log(ag) + 3.187 0.00 0.812
Forest [DOC] = 0.033� forest + 4.072 0.05 0.387 SUVA=0.821� log(forest) +�0.085 0.23 0.054
Grass [DOC] =�0.071� grass + 6.364 0.05 0.405 SUVA=�0.109� log(grass) + 2.96 0.18 0.092
Shrub [DOC] =�0.064� shrub + 6.504 0.13 0.177 SUVA=�0.127� log(shrub) + 2.989 0.19 0.077
Urban [DOC] = 0.29� urban + 5.284 0.01 0.770 SUVA=0.177� log(urban) + 2.99 0.01 0.663
Reservoir [DOC] =�0.295� reservoir + 6.099 0.01 0.684 SUVA=�0.163� log(reservoir) + 2.863 0.12 0.173
Lake [DOC] =�0.074� lake + 6.066 0.03 0.493 SUVA=�0.087� log(lake) + 3.042 0.03 0.518

Predictor Land Cover Versus Residual-DOC R2 p�Value Runoff versus Residual SUVA254 R2 p�Value

Agricultural RD=�0.096� ag + 1.551 0.21 0.062 RS=�0.12� log(ag) + 0.28 0.06 0.359
Forest RD=�0.001� forest + 0.071 0.00 0.964 RS= 0.172� log(forest) +�0.658 0.03 0.532
Grass RD= 0.061� grass +�0.456 0.06 0.358 RS=�0.034� log(grass) +�0.033 0.05 0.411
Shrub RD=0.05� shrub +�0.517 0.12 0.175 RS=�0.008� log(shrub) +�0.005 0.00 0.868
Urban RD=�0.98� urban + 1.739 0.11 0.195 RS=�0.284� log(urban) + 0.122 0.09 0.241
Reservoir RD=�0.039� reservoir + 0.037 0.00 0.944 RS=�0.069� log(reservoir) +�0.086 0.06 0.355
Lake RD=�0.083� lake + 0.277 0.06 0.324 RS=�0.136� log(lake) +�0.037 0.19 0.083

aThe second group of formulas represents the relationships between the residuals of the DOC or SUVA254 versus percent wetland-cover regression
(equations (3) and (5)) and the same land cover attributes. For all DOC relationships, the St. Mary’s River is excluded as an outlier. For the SUVA254 versus
percent wetland cover relationship, the Colorado River and the St. Lawrence River are excluded as outliers.
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concentration variability was still well explained by percent
wetland cover (R2 = 0.78, p< 0.0001; Figure 2b and Table 4):

DOC½ � ¼ 0:59� LW þ 3:28 (3)

[20] In this relationship, the St. Lawrence River falls well
below the regression line but is still included in the analysis.
We found no relationships significant to the level of a = 0.01
between any other land cover attribute (including land cover
classes, lake cover, and reservoir cover) and DOC concen-
tration. There were also no correlations between any land
cover attribute and the residuals of the DOC concentration
versus percent wetland regression (Table 4).
[21] We found no significant relationship at the level of

a =0.01 betweenmean annual runoff (RO) andmeanDOC con-
centration among basins. However, we did find a significant
positive correlation between mean DOC yield (g C yr�1m�2)
and runoff (cm/yr) which strengthened when the St. Mary’s
River was again excluded as an outlier (R2 = 0.68, p< 0.0001):

DOCyield ¼ 0:07� RO� 0:158 (4)

[22] It should be noted that runoff is used within the
LOADEST model for estimating mean annual DOC concen-
tration. Within individual systems, around half of basins
exhibited a significant positive correlation between daily
runoff and discrete DOC concentration. In these basins, run-
off explained between 11% and 62% of concentration vari-
ability (Table 5). However, we found no correlation
between the statistical significance of these relationships
and a basin’s percent wetland cover or mean annual runoff.

3.3. DOC Chemical Character Patterns

[23] Percent wetland cover also appeared to be an impor-
tant variable in controlling DOC chemical character. We
found a strong positive correlation between the logarithm
of percent wetland cover and mean SUVA254 among the
rivers in our data set (R2 = 0.60, p = 0.0001). In this relation-
ship the St. Mary’s River was not found to be an outlier.
However, the St. Lawrence and Colorado Rivers exhibited
far lower SUVA254 in L mg C�1m�1 than expected based

on their wetland cover, and when they were excluded from
the regression as outliers, the relationship between percent
wetland cover and SUVA254 improved (R2 = 0.91, p< 0.0001;
Figure 3 and Table 4):

SUVA254 ¼ 0:441� log LWð Þ þ 2:884 (5)

[24] No significant relationships were found between any
other land cover attribute and SUVA254, nor between any
land cover attribute and the residuals of the SUVA254 versus
percent wetland regression (Table 4).

Table 5. Table Showing Within-Basin Runoff (RO) Relationships for Dissolved Organic Carbon (DOC) Concentration and Specific Ul-
traviolet Absorption at 254 nm (SUVA254)

a

River Name Runoff-DOC Formula R2 p-Value Runoff-SUVA254 Formula R2 p-Value

Penobscot River [DOC] = 0.01�RO+8.46 0.11 0.004 N/S N/S 0.119
Kennebec River [DOC] =�0.01�RO+7.40 0.28 0.043 N/S N/S 0.275
Androscoggin River N/S N/S 0.191 N/S N/S 0.915
Susquehanna River N/S N/S 0.963 N/S N/S 0.227
Potomac River N/S N/S 0.706 N/S N/S 0.058
Edisto River [DOC] = 0.27�RO+4.63 0.40 0.003 N/S N/S 0.055
Altamaha River [DOC] = 0.03�RO+8.53 0.18 0.022 SUVA=0.01�RO+3.89 0.27 0.006
St. Mary’s River N/S N/S 0.336 N/S N/S 0.101
Santa Fe River [DOC] = 0.17�RO+2.78 0.62 < 0.001 SUVA=0.01�RO+3.76 0.10 0.045
Mobile River N/S N/S 0.443 SUVA=0.01�RO+3.06 0.35 0.001
St. Lawrence River [DOC] = 0.06�RO+0.97 0.38 0.005 N/S N/S 0.89
Mississippi River N/S N/S 0.086 SUVA=0.02�RO+2.57 0.27 0.007
Rio Grande N/S N/S 0.06 SUVA=2.05�RO+1.85 0.16 0.043
Colorado River [DOC] = 1.67�RO+2.56 0.14 0.029 SUVA=0.95�RO+1.35 0.20 0.011
San Joaquin River N/S N/S 0.583 N/S N/S 0.107
Sacramento River [DOC] = 0.06�RO+1.37 0.50 < 0.001 SUVA=0.04�RO+1.67 0.71 < 0.001
Columbia River [DOC] = 0.02�RO+1.47 0.47 0.001 SUVA=0.02�RO+1.96 0.27 0.017

aBasins without a significant relationship are labeled N/S.

Figure 3. Mean specific ultraviolet absorption at 254 nm
(SUVA254) versus percent wetland cover for all basins. X
axis is logscale and excluded outliers are in green. Final
model is in black. Model before the outliers were excluded
is shown in dotted grey. Error bars represent root mean
square error for the LOADEST model.
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[25] We also did not find a statistically significant relation-
ship between mean runoff and SUVA254 among basins, with
or without outliers (Figure 4), but within individual systems,
around half of basins exhibited a significant positive correla-
tion between discrete SUVA254 and daily runoff, with runoff
explaining between 10% and 71% of variability (Table 5).
Basins with a significant relationship tended to be in the
south and the west, whereas northern and eastern rivers did
not tend to show significance. As with DOC concentration,
we found no correlation between the statistical significance
of these relationships and a basin’s percent wetland cover.
[26] HPOA as a percentage of bulk DOC was positively

correlated with SUVA254 measurements in individual grab
samples across 14 basins where both measurements were
made (R2 = 0.89, p< 0.0001). Within individual basins, the
relationship between HPOA and SUVA254 was significant
for all but three basins (Mobile, Mississippi, and Colorado)
with R2 ranging from 0.24 for the St. Mary’s River to 0.87
for the neighboring Santa Fe River. As a result, HPOA pat-
terns were very similar to SUVA254.

4. Discussion

4.1. DOC Quantity

[27] We identified a significant positive relationship
between basin wetland cover and mean DOC concentration
among large watersheds that was consistent with what has
been reported for small basins [Buffam et al., 2007; Creed
et al., 2003; Eckhardt and Moore, 1990; Gergel et al.,
1999; Gorham et al., 1998; Raymond and Hopkinson,
2003]. Similar observations previously made among small
basins have typically been explained by the hypothesis that
runoff from a wetland to a stream channel would be less
likely to have intersected the mineral soil horizon than
runoff from non-wetland systems. These flow paths are

important because DOC builds up in wetlands due to anaer-
obic conditions, while DOC in subsurface flow intersecting
the mineral horizon is more likely to be removed from solution
by biotic processing and adsorption [Aitkenhead-Peterson
et al., 2003; Buffam et al., 2007; Eckhardt and Moore,
1990; Tipping et al., 1999]. We found that these small-basin
patterns also occurred in large river systems, demonstrating
that the control exerted by wetlands on riverine DOC
continued to be evident in large and continental scale systems.
The lack of a significant relationship between any other
land attribute and annual mean DOC concentration further
highlighted the unique relationship between wetlands and
riverine DOC.
[28] Mean runoff appeared to control variation in DOC

yield among large basins at the annual scale (equation (4))
without directly influencing DOC concentration [Mulholland
and Kuenzler, 1979; Mulholland and Watts, 1982]. The lack
of a significant relationship between mean DOC concentration
and mean runoff indicated that the controls exerted on mean
yield by runoff were unrelated to the factors controlling mean
concentration. Rather, when predicting DOC flux at annual
scales from large rivers, annual runoff should be considered
a vector, rather than an explanatory variable for concentration.
[29] Although percent wetland cover is a powerful explan-

atory variable, substantial unexplained DOC concentration
variability remained among the seven least wetland-
dominated watersheds. These watersheds are geographically
diverse and include the San Joaquin, Rio Grande, Potomac,
Colorado, Columbia, Sacramento, and Susquehanna Rivers,
which all have less than 1% wetland cover and possess a
mean DOC concentration of 3.5� 1.3 mg C L�1. Among
these basins, we found that DOC concentration was posi-
tively correlated with mean annual watershed temperature
(R2 = 0.79, p= 0.004; Figure 5) and it was not significantly

Figure 4. Mean specific ultraviolet absorption at 254 nm
(SUVA254) versus mean runoff for all basins. Excluded out-
liers (St. Lawrence and Colorado) are shown in green.

Figure 5. Mean dissolved organic carbon (DOC) concen-
tration versus mean watershed temperature for systems with
less than 1% wetland cover. Error bars represent root mean
square error for the LOADEST model.
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correlated with any type of land cover. In addition, when
temperature was included with wetland cover in a multiple
regression across all 17 sites, the prediction did not improve.
These results suggested the possibility that climate effects
dominate concentration variability among low-wetland sys-
tems at the annual scale. Mean annual temperatures may
be correlated with DOC concentration because longer grow-
ing seasons allow for greater primary production and thus
greater production of soil organic material. However, it is
clear that wetland controls eclipse climate effects in basins
where wetlands are more extensive.
[30] In this study, we sampled across the hydrograph and

estimated annual mean concentration and flux using LOADEST,
which led to estimates that differed from those made previ-
ously. The mean DOC concentration for the Mississippi River
reported by Leenheer [1982] (8.79 mg C L�1) was more than
double the mean concentration found in this study (4.0 mg C
L�1). The Mississippi is the largest river in North America
so even a small percentage error in its concentration can lead
to a large absolute error in the estimation of total continental
land-sea flux. For example, the DOC flux estimate made by
Leenheer [1982] for the Mississippi exceeded our estimate
by 1.6 Tg/yr, nearly as much as the combined annual DOC
flux from all other rivers in this study (1.9 Tg/yr). This
estimate was later used by Ludwig et al. [1996] in the
parameterization of a global continent-to-ocean organic
carbon flux model.
[31] Some more recent studies are also partly based on

values not updated in more than 30 years, which can include
mean DOC concentrations based on only two to four measure-
ments per year [Alexander et al., 1998; Harrison et al., 2005;
Lauerwald et al., 2012; Meybeck and Ragu, 1996; Seitzinger
et al., 2005]. For example, Seitzinger et al. [2005] and
Harrison et al. [2005] use DOC concentration measurements
at a Mississippi River gauging station recorded from 1978 to
1984, arriving at a mean concentration of 6.7 mg C L�1

(n=14). However, we examined the USGS National Water
Information System for historic DOC concentration measure-
ments from the same station and found only a single value that
exceeded 5 mg C L�1 in the period since 1997. The particular
case of the Mississippi is illustrative because the historical
USGS data show a dramatic shift between the 14 samples taken
between 1978 and 1984 that led to the mean of 6.7 mg C L�1

and the far more numerous samples taken after 1997. In the
early period, we found a mean concentration of 5.9 mg
C L�1, with a standard deviation of 2.6 mg C L�1 and during
the later period from 1997 to 2012, the mean was 3.7 mg
C L�1 with a standard deviation of only 0.5 mg C L�1. The
higher concentration and standard deviation in the early period
were driven by a few very high concentration measurements.
As previously shown, even a small overestimate of mean
DOC concentration for a large river has the potential to result
in huge absolute errors in the estimation of flux. By sampling
for multiple years across the hydrograph, employing strict
QA/QC, and estimating fluxes using the LOADEST model,
we present an updated picture of the quantity of DOC recently
delivered by these large rivers to estuaries and the coastal ocean.

4.2. DOC Chemical Character

[32] Basin-scale wetland cover was significantly corre-
lated with mean DOC chemical character among large
basins. The role of wetlands in controlling SUVA254 has

been previously demonstrated among small northern basins
[Agren et al., 2008] but this is the first time such a clear
relationship has been observed in a large and continental
scale study. The role of wetlands in controlling SUVA254

among large basins may be related to the previously
discussed hypothesis that subsurface flow through mineral
versus organic soil horizons can influence DOC concentra-
tion variability. Saturated, anaerobic conditions common in
wetland soils can inhibit organic matter remineralization
and lead to the persistence of semi-labile aromatic com-
pounds in subsurface flow that would drive up SUVA254 in
the rivers and streams to which it is discharged [Guillemette
and del Giorgio, 2011]. In the absence of wetlands, exten-
sive biotic processing and the preferential sorption of
strongly UV-absorbing, aromatic DOC molecules onto min-
eral soils, and in some specialized cases, onto sediments and
particles within the stream channel, would drive down
SUVA254 [Chorover and Amistadi, 2001; McKnight et al.,
2002; McKnight et al., 1992; Meier et al., 1999; Perez
et al., 2011; Tipping et al., 1999]. Thus, if subsurface flow
paths are less likely to intersect mineral horizons in water-
sheds with extensive wetland cover, less of the aromatic,
strongly UV-absorbing DOC would be removed and DOC
with a higher SUVA254 would be more likely to enter river
systems. The relationship between percent wetland cover
and SUVA254 in this study is strong, indicating that the wet-
land processes described here are important in large rivers at
the annual scale. The lack of any statistically significant
relationships between other land cover attributes and
SUVA254 further strengthens this interpretation. It is worth
noting that the wetlands influencing the rivers described here
range across a number of biomes and contain a wide range
of vegetation types. In our analyses, we did not observe an
influence of source (i.e., vegetation) differences on the
SUVA254 versus basin-scale wetland relationship and we
found little evidence for source-based differences in DOC
chemical character in the literature.
[33] The significant positive correlation between SUVA254

and the HPOA fraction of bulk DOCwas unsurprising because
the HPOA fraction consists of aquatic fulvic and humic acids
possessing greater aromaticity than other DOC fractions
[Aiken et al., 1992]. These results suggest that SUVA254

may be a useful surrogate for HPOA in organic carbon model-
ing applications [Butman et al., 2012; Spencer et al., 2012].
However, this relationship broke downwithin some individual
basins (Mobile, Mississippi, and Colorado; Table 6), indicat-
ing that non-aromatic hydrophobic acids may constitute
HPOA in some cases and that care should be taken when uti-
lizing SUVA254 as a proxy for HPOA.

4.3. Large River Versus Small Stream DOC Quantity
and Chemical Character

[34] Several processes could lead to differences in DOC
quantity and chemical character between small streams and
large rivers including in-stream transformation of terrestrial
headwater sources and additional DOC loads to large rivers
not accounted for in small headwater catchment studies.
While aquatic transformations may occur in smaller streams,
we would expect their ability to influence DOC quantity and
chemical character to be minimal at that point due to short
residence times. Thus, headwater streams provide a signal
of terrestrial influence. By the time water has reached large
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rivers, aquatic processes such as microbial remineralization,
sorption to sediments, and photodegradation could accumulate
sufficiently to alter DOC [Aufdenkampe et al., 2011;
McKnight et al., 2002; McKnight et al., 1992; Perez et al.,
2011; Richey et al., 1990; Shih et al., 2010; Weyhenmeyer
et al., 2012]. Sources unique to large rivers could also alter
large river DOC relative to smaller headwaters, including
accumulated aquatic DOC production from primary producers
[Shih et al., 2010], different quantity or chemical character
from large river floodplains compared to headwater wetlands,
poorly understood groundwater inputs, and anthropogenic
point sources [Butman et al., 2012] which tend to be located
on larger rivers due to the distribution of urban centers.
[35] Given all the potential factors that could alter DOC, it

was surprising that the terrestrial wetland signal for both
DOC quantity and character was so clear across most of the
large watersheds. Percent wetland cover alone explained most
of the DOC concentration and SUVA254 variability among ba-
sins at the annual scale. When we compared the concentration
versus wetland relationship observed here (equation (3)) to
those observed in previous headwater studies [Buffam et al.,
2007; Creed et al., 2003; Eckhardt and Moore, 1990; Gergel
et al., 1999; Gorham et al., 1998; Raymond and Hopkinson,
2003], we found little obvious difference in absolute concen-
tration, slope, or intercept (Figure 6).
[36] However, the presence of lakes and reservoirs with

long residence times appears to alter this pattern, as
suggested by the differing DOC quantity and/or chemical
character in the Colorado River and St. Lawrence River out-
liers. Across all basins, we did not find a relationship
between either percent reservoir cover or percent lake cover
and DOC or SUVA254. However, Lakes Mead and Powell
on the Colorado River have a combined residence time of
approximately 5 years [USBR-LC; USBR-UC], and Lake
Ontario alone on the St. Lawrence has a residence time of
approximately 6 years [Beltran et al., 1995]. The extremely
long residence times in these two outlier rivers might have
driven down SUVA254 by some combination of autochtho-
nous production of less aromatic DOC, biotic processing,
and photodegradation [Miller, 2012; Spencer et al., 2012].
Previous studies suggest that in the Colorado River,

artificially flooded canyons like Lake Powell act as a trap
for organic material entering from upstream. Over time, set-
tled organic matter can remineralize or adsorb onto precipi-
tating calcite [Reynolds, 1978]. Water discharged from
Glen Canyon Dam is left nutrient rich and nearly free of
suspended particles. These conditions also facilitate autoch-
thonous production of weakly UV-absorbing DOC in the
downstream reach [Henderson et al., 2008; Stanford and
Ward, 1990].
[37] Extensive photodegradation and biological process-

ing of terrestrially derived DOC during the long Great Lakes
residence time and limited autochthonous production could
explain the apparent conundrum in the St. Lawrence River

Figure 6. Dissolved organic carbon (DOC) concentration
versus percent wetland cover relationships from Figure 2b,
which excludes the St. Mary’s River (red diamonds) and five
previous small-basin studies.

Table 6. Table Showing Within-Basin Relationships Between Hydrophobic Organic Acid (HPOA) and Specific Ultraviolet Absorbance
at 254 nm (SUVA254)

a

River Name HPOA-SUVA254 formula R2 p-value

Penobscot River ND ND ND
Kennebec River ND ND ND
Androscoggin River ND ND ND
Susquehanna River SUVA=4.795�HPOA+0.346 0.64 < 0.001
Potomac River SUVA=6.584�HPOA+�0.306 0.58 0.003
Edisto River SUVA=4.988�HPOA+1.061 0.54 0.001
Altamaha River SUVA=8.267�HPOA+�0.577 0.39 < 0.001
St. Mary’s River SUVA=2.738�HPOA+2.826 0.24 0.003
Santa Fe River SUVA=7.245�HPOA+�0.19 0.87 < 0.001
Mobile River N/S N/S 0.201
St. Lawrence River SUVA=5.243�HPOA+�0.18 0.64 < 0.001
Mississippi River N/S N/S 0.346
Rio Grande SUVA=6.013�HPOA+�0.102 0.48 0.001
Colorado River N/S N/S 0.199
San Joaquin River SUVA=4.807�HPOA+0.43 0.40 0.009
Sacramento River SUVA=8.07�HPOA+�0.825 0.76 < 0.001
Columbia River SUVA=8.754�HPOA+�1.143 0.56 0.003

aBasins without a significant relationship are labeled N/S. ND indicates that no data were available.
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of low DOC concentrations and very low SUVA254 [Helie
and Hillaire-Marcel, 2006]. Photodegradation acts primarily
by breaking up strongly UV-absorbing molecules like terres-
trial humic and fulvic acids [Moran and Zepp, 1997; Waiser
and Robarts, 2004], which drive down SUVA254 over time.
Photodegradation of DOC has also been observed to result
in an increase in its lability, leading to greater biotic
remineralization [Anesio et al., 2005]. Thus, in addition to
driving down SUVA254 in the St. Lawrence River,
photodegradation could lead to increased biotic processing
and provide an explanation for its comparatively low DOC
concentration (Figure 2b).
[38] SUVA254 end-members identified in this study were

generally similar to those found in the literature [Spencer
et al., 2008; Weishaar et al., 2003], further suggesting that
larger river DOC is similar to that in smaller headwater
streams. Maximum mean SUVA254 in the wetland domi-
nated St. Mary’s (4.7� 0.3 L mg C�1m�1) was similar to
that previously reported from specific wetland sites (3.2 to
5.3 L mg C�1m�1) [Weishaar et al., 2003]. However, mean
SUVA254 for the six river basins with less than 1%
wetland cover (Colorado River excluded) was 2.5� 0.2 L
mg C�1m�1, significantly higher than algal or microbially
derived SUVA254 end-members found by Stets et al.
[2010] for closed-basin, seepage lakes which ranged from
0.9 to 1.2 L mg C�1m�1. If biogeochemical processing
played the primary role in driving SUVA254 by breaking
down aromatic allochthonous DOC, we would expect very
low wetland systems to exhibit SUVA254 values similar to
previously identified end-members or values from very long
residence time systems (St. Lawrence and Colorado Rivers:
1.3 and 1.7L mg C�1m�1, respectively). Rather, these results
support the hypothesis proposed by del Giorgio and Pace
[2008] and Richey et al. [1990] that labile autochthonous
material may be rapidly recycled while more refractory, gener-
ally allochthonous DOC is delivered to the coastal ocean.
[39] We found that in large systems lacking long residence

time in surface waters, DOC concentration and chemical
character were well predicted by percent wetland cover.
This suggests that for these systems at annual scales, in-
stream processes like autochthonous production, biotic
remineralization, and photodegradation play a subordinate
role in driving DOC quantity and chemical character com-
pared to processes that load allochthonous DOC into the
river system. It is likely that any new production is being
quickly recycled by the biotic community rather than deliv-
ered in large quantities to the coastal ocean [del Giorgio and
Pace, 2008; Richey et al., 1990]. However, this finding is
based on a relatively weak test that compares a mean annual
DOC versus wetland relationship among heterogeneous
large basins with snapshots from more homogeneous small
basins in a variety of mostly northern regions. In addition,
few comparative DOC chemical character studies in small
basins have been conducted (but see Jaffe et al. [2008]).
Finally, the tendency of smaller basins in this analysis to pos-
sess greater wetland coverage complicates the interpretation of
our results because it is difficult to divorce the impact of basin
size from wetlands. In order to fully evaluate the role of
network-scale processing in driving annual DOC quantity
and chemical character exported from large basins, more
comprehensive, synoptic studies of DOC and DOC chemical
character throughout river networks should be conducted.

5. Conclusion

[40] We demonstrated that wetlands play an integral role
in controlling both DOC concentration and chemical charac-
ter in 17 large and diverse North American rivers. The rela-
tionship between DOC and wetlands is similar to those
previously reported for small watersheds. This result sug-
gests that factors that may alter the terrestrial signal in large
basins, such as in-stream processes, floodplain dynamics, or
major anthropogenic inputs to large rivers, do not alter
terrestrial control of carbon quantity and chemical character
exports over annual time scales. The exceptions are surface
water networks with long residence times, which suggest
in-stream sources or transformations overwhelm the terres-
trial signal. Our study is strengthened by the consistency of
both DOC quantity and chemical character. These results
supply valuable insight into the controls on mean DOC
quantity and chemical character at broad spatial and tempo-
ral scales and provide new annual estimates of DOC flux and
chemical character for several of the largest rivers in temper-
ate North America. In order to better understand the source
and fate of DOC in the environment, future efforts should
include synoptic sampling of DOC quantity and chemical
character, from headwaters through large river main stems,
which would help unravel the hydrological processes that
drive DOC variability within basins, the subsurface biogeo-
chemical reactions that drive baseflow chemistry, and the
biological and photolytic riverine processing that drives
DOC quantity and chemical character over time.
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