3,718 research outputs found
Poisson distribution of male mating success in laboratory populations of Drosophila melanogaster
Variation among males and females in reproductive success is a major determinant of effective population size. Most studies of male mating success in Drosophila, however, have been done under conditions very different from those in typical cultures. We determined the distribution of male mating success in five laboratory populations of D. melanogaster maintained on a 14 d, discrete generation cycle fairly representative of standard Drosophila cultures. Mating success was measured as the number of matings a male could achieve under conditions closely approximating a regular culture vial of these populations. Preliminary studies determined that most mating in these populations occurred within 14 h of the flies attaining sexual maturity. Consequently, individual virgin males were marked with white paint on their thorax, put into vials with varying numbers of unmarked virgin flies of both sexes, and monitored continuously for matings over a period of up to 14 h. At various times during the assay, virgin males and females were added to these vials in proportions simulating the pattern of eclosion in culture vials. The observed variation in the number of matings per male in the five populations was, by and large, consistent with a Poisson distribution, suggesting that male mating success in short-generation-time, discrete-generation laboratory cultures of D. melanogaster may fulfil a fundamental assumption of the Wright-Fisher model of genetic drift in finite populations
Interface-mediated interactions: Entropic forces of curved membranes
Particles embedded in a fluctuating interface experience forces and torques
mediated by the deformations and by the thermal fluctuations of the medium.
Considering a system of two cylinders bound to a fluid membrane we show that
the entropic contribution enhances the curvature-mediated repulsion between the
two cylinders. This is contrary to the usual attractive Casimir force in the
absence of curvature-mediated interactions. For a large distance between the
cylinders, we retrieve the renormalization of the surface tension of a flat
membrane due to thermal fluctuations.Comment: 11 pages, 5 figures; final version, as appeared in Phys. Rev.
Mass Hierarchy, Mixing, CP-Violation and Higgs Decay---or Why Rotation is Good for Us
The idea of a rank-one rotating mass matrix (R2M2) is reviewed detailing how
it leads to ready explanations both for the fermion mass hierarchy and for the
distinctive mixing patterns between up and down fermion states, which can be
and have been tested against experiment and shown to be fully consistent with
existing data. Further, R2M2 is seen to offer, as by-products: (i) a new
solution of the strong CP problem in QCD by linking the theta-angle there to
the Kobayashi-Maskawa CP-violating phase in the CKM matrix, and (ii) some novel
predictions of possible anomalies in Higgs decay observable in principle at the
LHC. A special effort is made to answer some questions raised.Comment: 47 pages, 9 figure
How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: A theoretical analysis
Measurements with an atomic force microscope (AFM) offer a direct way to
probe elastic properties of lipid bilayer membranes locally: provided the
underlying stress-strain relation is known, material parameters such as surface
tension or bending rigidity may be deduced. In a recent experiment a
pore-spanning membrane was poked with an AFM tip, yielding a linear behavior of
the force-indentation curves. A theoretical model for this case is presented
here which describes these curves in the framework of Helfrich theory. The
linear behavior of the measurements is reproduced if one neglects the influence
of adhesion between tip and membrane. Including it via an adhesion balance
changes the situation significantly: force-distance curves cease to be linear,
hysteresis and nonzero detachment forces can show up. The characteristics of
this rich scenario are discussed in detail in this article.Comment: 14 pages, 9 figures, REVTeX4 style. New version corresponds to the
one accepted by PRE. The result section is restructured: a comparison to
experimental findings is included; the discussion on the influence of
adhesion between AFM tip and membrane is extende
A Comprehensive Mechanism Reproducing the Mass and Mixing Parameters of Quarks and Leptons
It is shown that if, from the starting point of a universal rank-one mass
matrix long favoured by phenomenologists, one adds the assumption that it
rotates (changes its orientation in generation space) with changing scale, one
can reproduce, in terms of only 6 real parameters, all the 16 mass ratios and
mixing parameters of quarks and leptons. Of these 16 quantities so reproduced,
10 for which data exist for direct comparison (i.e. the CKM elements including
the CP-violating phase, the angles in
-oscillation, and the masses ) agree well with
experiment, mostly to within experimental errors; 4 others (), the experimental values for which can only be inferred, agree
reasonably well; while 2 others ( for leptons), not yet
measured experimentally, remain as predictions. In addition, one gets as
bonuses, estimates for (i) the right-handed neutrino mass and (ii)
the strong CP angle inherent in QCD. One notes in particular that the
output value for from the fit agrees very well with
recent experiments. By inputting the current experimental value with its error,
one obtains further from the fit 2 new testable constraints: (i) that
must depart from its "maximal" value: , (ii) that the CP-violating (Dirac) phase in the PMNS would be
smaller than in the CKM matrix: of order only if
not vanishing altogether.Comment: 37 pages, 1 figur
The multistable melanopsins of mammals
Melanopsin is a light-activated G protein coupled receptor that is expressed widely across phylogeny. In mammals, melanopsin is found in intrinsically photosensitive retinal ganglion cells (ipRGCs), which are especially important for “non-image” visual functions that include the regulation of circadian rhythms, sleep, and mood. Photochemical and electrophysiological experiments have provided evidence that melanopsin has at least two stable conformations and is thus multistable, unlike the monostable photopigments of the classic rod and cone photoreceptors. Estimates of melanopsin’s properties vary, challenging efforts to understand how the molecule influences vision. This article seeks to reconcile disparate views of melanopsin and offer a practical guide to melanopsin’s complexities
Balancing torques in membrane-mediated interactions: Exact results and numerical illustrations
Torques on interfaces can be described by a divergence-free tensor which is
fully encoded in the geometry. This tensor consists of two terms, one
originating in the couple of the stress, the other capturing an intrinsic
contribution due to curvature. In analogy to the description of forces in terms
of a stress tensor, the torque on a particle can be expressed as a line
integral along any contour surrounding the particle. Interactions between
particles mediated by a fluid membrane are studied within this framework. In
particular, torque balance places a strong constraint on the shape of the
membrane. Symmetric two-particle configurations admit simple analytical
expressions which are valid in the fully nonlinear regime; in particular, the
problem may be solved exactly in the case of two membrane-bound parallel
cylinders. This apparently simple system provides some flavor of the remarkably
subtle nonlinear behavior associated with membrane-mediated interactions.Comment: 16 pages, 10 figures, REVTeX4 style. The Gaussian curvature term was
included in the membrane Hamiltonian; section II.B was rephrased to smoothen
the flow of presentatio
The Cardiac Atlas Project--An Imaging Database for Computational Modeling and Statistical Atlases of the Heart
MOTIVATION: Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups.
RESULTS: Three main open-source software components were developed: (i) a database with web-interface; (ii) a modeling client for 3D + time visualization and parametric description of shape and motion; and (iii) open data formats for semantic characterization of models and annotations. The database was implemented using a three-tier architecture utilizing MySQL, JBoss and Dcm4chee, in compliance with the DICOM standard to provide compatibility with existing clinical networks and devices. Parts of Dcm4chee were extended to access image specific attributes as search parameters. To date, approximately 3000 de-identified cardiac imaging examinations are available in the database. All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt)
Randomized Controlled Trial of Difelikefalin for Chronic Pruritus in Hemodialysis Patients
INTRODUCTION: There is an unmet medical need for pruritus associated with chronic kidney disease, a distressing complication characterized by generalized and persistent itch affecting 20% to 40% of patients undergoing hemodialysis. Here we report the results of a phase 2 trial evaluating the efficacy and safety of a novel peripherally restricted kappa opioid receptor agonist, difelikefalin, in adult patients undergoing hemodialysis with pruritus.
METHODS: In this study, 174 hemodialysis patients with moderate-to-severe pruritus were randomly assigned to receive difelikefalin (0.5, 1.0, or 1.5 μg/kg) or placebo intravenously thrice weekly after each hemodialysis session for 8 weeks in a double-blind, controlled trial. The primary endpoint was the change from baseline at week 8 in the weekly mean of the 24-hour Worst Itching Intensity Numerical Rating Scale score. The secondary efficacy endpoint was the change in itch-related quality of life measured by the Skindex-10 questionnaire. Other endpoints included safety, sleep quality, and additional measures including the 5-D itch scale.
RESULTS: A significant reduction from baseline in itch intensity scores at week 8 favored all difelikefalin doses combined versus placebo (
CONCLUSION: In this trial, difelikefalin effectively reduced itching intensity and improved sleep and itch-related quality of life
Positron collisions with ethene
We present experimental and theoretical cross sections for positron collisions with ethene molecules. The experimental total cross sections (TCSs) were obtained with a linear transmission technique, for energies from 0.1 eV up to 70 eV. The calculations employed the Schwinger multichannel method and were performed in the static plus polarization approximation for energies up to 10 eV. Our calculated elastic cross sections indicate a Ramsauer-Townsend minimum around 2.8 eV and a virtual state, in agreement with previous calculations by da Silva et al. [ Phys. Rev. Lett. 77 1028 (1996)]. We found reasonable agreement between the calculated elastic integral cross section and the measured total cross section below the positronium formation threshold. The present results are also in quite good agreement with available theoretical and experimental data, although for the experiments this is only true for TCSs above about 7 eV
- …