research

A Comprehensive Mechanism Reproducing the Mass and Mixing Parameters of Quarks and Leptons

Abstract

It is shown that if, from the starting point of a universal rank-one mass matrix long favoured by phenomenologists, one adds the assumption that it rotates (changes its orientation in generation space) with changing scale, one can reproduce, in terms of only 6 real parameters, all the 16 mass ratios and mixing parameters of quarks and leptons. Of these 16 quantities so reproduced, 10 for which data exist for direct comparison (i.e. the CKM elements including the CP-violating phase, the angles θ12,θ13,θ23\theta_{12}, \theta_{13}, \theta_{23} in ν\nu-oscillation, and the masses mc,mμ,mem_c, m_\mu, m_e) agree well with experiment, mostly to within experimental errors; 4 others (ms,mu,md,mν2m_s, m_u, m_d, m_{\nu_2}), the experimental values for which can only be inferred, agree reasonably well; while 2 others (mν1,δCPm_{\nu_1}, \delta_{CP} for leptons), not yet measured experimentally, remain as predictions. In addition, one gets as bonuses, estimates for (i) the right-handed neutrino mass mνRm_{\nu_R} and (ii) the strong CP angle θ\theta inherent in QCD. One notes in particular that the output value for sin22θ13\sin^2 2 \theta_{13} from the fit agrees very well with recent experiments. By inputting the current experimental value with its error, one obtains further from the fit 2 new testable constraints: (i) that θ23\theta_{23} must depart from its "maximal" value: sin22θ230.935±0.021\sin^2 2 \theta_{23} \sim 0.935 \pm 0.021, (ii) that the CP-violating (Dirac) phase in the PMNS would be smaller than in the CKM matrix: of order only sinδCP0.31|\sin \delta_{CP}| \leq 0.31 if not vanishing altogether.Comment: 37 pages, 1 figur

    Similar works