14 research outputs found
Serum Bilirubin and Ferritin Levels Link Heme Oxygenase-1 Gene Promoter Polymorphism and Susceptibility to Coronary Artery Disease in Diabetic Patients
OBJECTIVEāHeme oxygenase (HO) leads to the generation of free iron, carbon monoxide, and bilirubin. A length polymorphism of GT repeats in the promoter of human HO-1 gene has been shown to modulate gene transcription. The aim of this study was to assess the association of the length of (GT)n repeats in the HO-1 gene promoter with serum bilirubin, markers of iron status, and the development of coronary artery disease (CAD)
Normal-repeat-length polyglutamine peptides accelerate aggregation nucleation and cytotoxicity of expanded polyglutamine proteins
The dependence of disease risk and age-of-onset on expanded CAG repeat length in diseases like Huntington's disease (HD) is well established and correlates with the repeat-length-dependent nucleation kinetics of polyglutamine (polyGln) aggregation. The wide variation in ages of onset among patients with the same repeat length, however, suggests a role for modifying factors. Here we describe the ability of normal-length polyGln repeat sequences to greatly accelerate the nucleation kinetics of an expanded polyGln peptide. We find that normal-length polyGln peptides enhance the in vitro nucleation kinetics of a Q(47) peptide in a concentration-dependent and repeat-length-dependent manner. In vivo, we show that coexpression of a Q(20) sequence in a Drosophila model of HD expressing Htt exon 1 protein with an Q(93) repeat accelerates both aggregate formation and neurotoxicity. The accelerating effect of short polyGln peptides is attributable to the promiscuity of polyGln aggregate elongation and reflects the intimate relationship between nucleus formation and early elongation events in establishing nucleation kinetics. The results suggest that the overall state of the polyGln protein network in a cellular environment may have a profound effect on the toxic consequences of polyGln expansion and thus may serve as a genetic modifier of age of onset in HD
Bilirubin and glutathione have complementary antioxidant and cytoprotective roles
Glutathione (GSH) and bilirubin are prominent endogenous antioxidant cytoprotectants. Despite tissue levels that are thousands of times lower than GSH, bilirubin is effective because of the biosynthetic cycle wherein it is generated from biliverdin by biliverdin reductase (BVR). When bilirubin acts as an antioxidant, it is oxidized to biliverdin, which is immediately reduced by BVR to bilirubin. Why does the body employ both of these 2 distinct antioxidant systems? We show that the water-soluble GSH primarily protects water soluble proteins, whereas the lipophilic bilirubin protects lipids from oxidation. Mice with deletion of heme oxygenase-2, which generates biliverdin, display greater lipid than protein oxidation, while the reverse holds for GSH depletion. RNA interference depletion of BVR increases oxidation of lipids more than protein. Depletion of BVR or GSH augments cell death in an oxidant-specific fashion