851 research outputs found

    IL-8 production by peripheral blood mononuclear cells in nephrotic patients

    Get PDF
    IL-8 production by peripheral blood mononuclear cells in nephrotic patients. We studied the interleukin 8 (IL-8) gene expression by peripheral blood mononuclear cells (PBMC) and the IL-8 serum concentration in patients with idiopathic minimal lesion nephrotic syndrome (IMLNS) and other glomerulopathies. PBMC from eight of the nine (IMLNS) patients in relapse demonstrated the presence of IL-8 mRNA. All three IMLNS patients in remission (P = 0.0026 when compared to patients in relapse) and the two patients with nephrotic syndrome with other glomerulopathies failed to elicit an IL-8 mRNA response. Eleven of the 12 IMLNS patients in relapse showed IL-8 serum concentration above the level of detection. Only one of the seven patients in remission had detectable serum levels of IL-8 (P = 0.0033 when compared to levels from IMLNS patients in relapse). IL-8 serum levels were not detectable in three patients with nephrotic syndrome and other glomerulopathies. Supernatants of PBMC cultures from IMLNS patients in relapse increased the 35sulfate uptake by rat GBM. This effect was abolished by the addition of anti-IL-8 neutralizing antibody to the culture media and reproduced by the addition to the media of IL-8 in concentrations found in the serum of IMLNS patients in relapse. Finally, the effect of IL-8 on the 35sulfate turnover of the glomerular basement membrane (GBM) sulfated compounds was evaluated in vitro. A significant decrease in the percentage of residual 35sulfate incorporated in the GBM (41 ± 5, mean ± sem) was observed in cultures treated with IL-8 as compared to those that were not treated with IL-8 (58 ± 8, P < 0.01). Because IL-8 affects the metabolism of GBM compounds that may play a role in glomerular permeability, this lymphokine may have a potential pathogenic role in the proteinuria of IMLNS

    Kramers barrier crossing as a cooling machine

    Full text link
    The achievement of local cooling is a prominent goal in the design of functional transport nanojunctions. One generic mechanism for local cooling is driving a system through a local uphill potential step. In this paper we examine the manifestation of this mechanism in the context of the Kramers barrier crossing problem. For a particle crossing a barrier, the local effective temperature and the local energy exchange with the thermal environment are calculated, and the coefficient of performance of the ensuing cooling process is evaluated.Comment: 12 pages, 5 figure

    Inhibition of rat mixed lymphocyte cultures by suppressor macrophages

    Full text link
    Normal rat spleens contain suppressor cells which can inhibit proliferative and cytotoxic responses of lymphocytes to alloantigens in vitro. The suppressor cells are adherent, phagocytic, resistant to treatment with ATS and C, radioresistant, resistant to treatment with mitomycin C, apparently absent from the thymus, and found in very high concentrations in peritoneal exudates. These characteristics indicate that the suppressor cell is a macrophages and not a T cell. When suppressor cells were removed from spleen cell suspensions, strong in vitro proliferative and cytotoxic responses to alloantigens could consistently be observed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22959/1/0000526.pd

    State of the science on controversial topics: orthodontic therapy and gingival recession (a report of the Angle Society of Europe 2013 meeting).

    Get PDF
    BACKGROUND: Controversy exists in the literature between the role of orthodontic treatment and gingival recession. Whilst movement of teeth outside the alveolar bone has been reported as a risk factor for gingival recession, others have found no such association. FINDINGS: The Angle Society of Europe devoted a study day to explore the evidence surrounding these controversies. The aim of the day was for a panel of experts to evaluate the current evidence base in relation to either the beneficial or detrimental effects of orthodontic treatment on the gingival tissue. CONCLUSIONS: There remains a relatively weak evidence base for the role of orthodontic treatment and gingival recession and thus a need to undertake a risk assessment and appropriate consent prior to the commencement of treatment. In further prospective, well designed trials are needed

    Thermodynamics of quantum systems under dynamical control

    Full text link
    In this review the debated rapport between thermodynamics and quantum mechanics is addressed in the framework of the theory of periodically-driven/controlled quantum-thermodynamic machines. The basic model studied here is that of a two-level system (TLS), whose energy is periodically modulated while the system is coupled to thermal baths. When the modulation interval is short compared to the bath memory time, the system-bath correlations are affected, thereby causing cooling or heating of the TLS, depending on the interval. In steady state, a periodically-modulated TLS coupled to two distinct baths constitutes the simplest quantum heat machine (QHM) that may operate as either an engine or a refrigerator, depending on the modulation rate. We find their efficiency and power-output bounds and the conditions for attaining these bounds. An extension of this model to multilevel systems shows that the QHM power output can be boosted by the multilevel degeneracy. These results are used to scrutinize basic thermodynamic principles: (i) Externally-driven/modulated QHMs may attain the Carnot efficiency bound, but when the driving is done by a quantum device ("piston"), the efficiency strongly depends on its initial quantum state. Such dependence has been unknown thus far. (ii) The refrigeration rate effected by QHMs does not vanish as the temperature approaches absolute zero for certain quantized baths, e.g., magnons, thous challenging Nernst's unattainability principle. (iii) System-bath correlations allow more work extraction under periodic control than that expected from the Szilard-Landauer principle, provided the period is in the non-Markovian domain. Thus, dynamically-controlled QHMs may benefit from hitherto unexploited thermodynamic resources

    Proceedings of the I ndo‐ U.S. bilateral workshop on accelerating botanicals/biologics agent development research for cancer chemoprevention, treatment, and survival

    Get PDF
    With the evolving evidence of the promise of botanicals/biologics for cancer chemoprevention and treatment, an Indo‐U.S. collaborative Workshop focusing on “Accelerating Botanicals Agent Development Research for Cancer Chemoprevention and Treatment” was conducted at the Moffitt Cancer Center, 29–31 May 2012. Funded by the Indo‐U.S. Science and Technology Forum, a joint initiative of Governments of India and the United States of America and the Moffitt Cancer Center, the overall goals of this workshop were to enhance the knowledge (agents, molecular targets, biomarkers, approaches, target populations, regulatory standards, priorities, resources) of a multinational, multidisciplinary team of researcher's to systematically accelerate the design, to conduct a successful clinical trials to evaluate botanicals/biologics for cancer chemoprevention and treatment, and to achieve efficient translation of these discoveries into the standards for clinical practice that will ultimately impact cancer morbidity and mortality. Expert panelists were drawn from a diverse group of stakeholders, representing the leadership from the National Cancer Institute's Office of Cancer Complementary and Alternative Medicine (OCCAM), NCI Experimental Therapeutics (NExT), Food and Drug Administration, national scientific leadership from India, and a distinguished group of population, basic and clinical scientists from the two countries, including leaders in bioinformatics, social sciences, and biostatisticians. At the end of the workshop, we established four Indo‐U.S. working research collaborative teams focused on identifying and prioritizing agents targeting four cancers that are of priority to both countries. Presented are some of the key proceedings and future goals discussed in the proceedings of this workshop. With the evolving evidence of the promise of botanicals/biologics for cancer chemoprevention and treatment, the proceedings of the Indo‐U.S. collaborative Workshop represent one of the most contemporary issues in Cancer Medicine .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96353/1/cam442.pd

    Th1-Th17 Cells Mediate Protective Adaptive Immunity against Staphylococcus aureus and Candida albicans Infection in Mice

    Get PDF
    We sought to define protective mechanisms of immunity to Staphylococcus aureus and Candida albicans bloodstream infections in mice immunized with the recombinant N-terminus of Als3p (rAls3p-N) vaccine plus aluminum hydroxide (Al(OH3) adjuvant, or adjuvant controls. Deficiency of IFN-Îł but not IL-17A enhanced susceptibility of control mice to both infections. However, vaccine-induced protective immunity against both infections required CD4+ T-cell-derived IFN-Îł and IL-17A, and functional phagocytic effectors. Vaccination primed Th1, Th17, and Th1/17 lymphocytes, which produced pro-inflammatory cytokines that enhanced phagocytic killing of both organisms. Vaccinated, infected mice had increased IFN-Îł, IL-17, and KC, increased neutrophil influx, and decreased organism burden in tissues. In summary, rAls3p-N vaccination induced a Th1/Th17 response, resulting in recruitment and activation of phagocytes at sites of infection, and more effective clearance of S. aureus and C. albicans from tissues. Thus, vaccine-mediated adaptive immunity can protect against both infections by targeting microbes for destruction by innate effectors
    • 

    corecore