193 research outputs found

    Exome sequencing in a consanguineous family clinically diagnosed with early-onset Alzheimer's disease identifies a homozygous CTSF mutation

    Get PDF
    We have previously reported the whole genome genotyping analysis of 2 consanguineous siblings clinically diagnosed with early onset Alzheimer's disease (AD). In this analysis, we identified several large regions of homozygosity shared between both affected siblings, which we suggested could be candidate loci for a recessive genetic lesion underlying the early onset AD in these cases. We have now performed exome sequencing in one of these siblings and identified the potential cause of disease: the CTSF c.1243G>A:p.Gly415Arg mutation in homozygosity. Biallelic mutations in this gene have been shown to cause Type B Kufs disease, an adult-onset neuronal ceroid lipofuscinosis with some cases resembling the impairment seen in AD

    Task force consensus on nosology and cut-off values for axial postural abnormalities in parkinsonism

    Get PDF
    Background: There is no consensus with regard to the nosology and cut-off values for postural abnormalities in parkinsonism. Objective: To reach a consensus regarding the nosology and cut-off values. Methods: Using a modified Delphi panel method, multiple rounds of questionnaires were conducted by movement disorder experts to define nosology and cut-offs of postural abnormalities. Results: After separating axial from appendicular postural deformities, a full agreement was found for the following terms and cut-offs: camptocormia, with thoracic fulcrum (>45°) or lumbar fulcrum (>30°), Pisa syndrome (>10°), and antecollis (>45°). "Anterior trunk flexion," with thoracic (≥25° to ≤45°) or lumbar fulcrum (>15° to ≤30°), "lateral trunk flexion" (≥5° to ≤10°), and "anterior neck flexion" (>35° to ≤45°) were chosen for milder postural abnormalities. Conclusions: For axial postural abnormalities, we recommend the use of proposed cut-offs and six unique terms, namely camptocormia, Pisa syndrome, antecollis, anterior trunk flexion, lateral trunk flexion, anterior neck flexion, to harmonize clinical practice and future research. Keywords: Parkinson's disease; Pisa syndrome; antecollis; atypical parkinsonisms; camptocormia; diagnostic criteria.; postural abnormalities

    Evaluation of the finger wrinkling test: a pilot study

    Get PDF
    Purpose: Tilt table testing mainly evaluates the systemic cardiovascular part of the autonomic nervous system, while it is assumed that the finger wrinkling test assesses the peripheral part of the autonomic nervous system. In this study we explored whether the finger wrinkling test could be a useful test for autonomic dysfunction and whether the clinical evaluation of wrinkling can be improved by digital analysis of photographs. Methods: As much as 20 healthy subjects and 15 patients underwent tilt table testing and finger wrinkling testing. During the finger wrinkling test the right hand was immersed in water at 40°C. The degree of wrinkling was assessed with a 5-point clinical scale at baseline, 5, 15 and 30 min of immersion. Photographs were taken at the same intervals. Several features were evaluated using digital analysis: length and gradient of automatically detected wrinkle and mean, maximum, minimum, variance and derivative of grey value of pixels. Results: Clinical scoring of wrinkling allowed differentiation between healthy subjects and patients with a normal and an abnormal response to tilt table testing. Relevant features obtained with digital analysis were mean grey value and the gradient of automatically detected wrinkle. McNemar’s test showed no difference in test results between the tilt table test and the finger wrinkling test with a kappa of 0.68. Conclusion: The finger wrinkling test can be used as a screening test before tilt table testing. Visual evaluation of wrinkling is still superior to digital analysis of photographs

    Acute camptocormia induced by olanzapine: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Camptocormia refers to an abnormal posture with flexion of the thoraco-lumbar spine which increases during walking and resolves in supine position. This symptom is an increasingly recognized feature of parkinsonian and dystonic disorders, but may also be caused by neuromuscular diseases. There is recent evidence that both central and peripheral mechanisms may be involved in the pathogenesis of camptocormia. We report a case of acute onset of camptocormia, a rare side effect induced by olanzapine, a second-generation atypical anti-psychotic drug with fewer extra-pyramidal side-effects, increasingly used as first line therapy for schizophrenia, delusional disorders and bipolar disorder.</p> <p>Case presentation</p> <p>A 73-year-old Caucasian woman with no history of neuromuscular disorder, treated for chronic delusional disorder for the last ten years, received two injections of long-acting haloperidol. She was then referred for fatigue. Physical examination showed a frank parkinsonism without other abnormalities. Routine laboratory tests showed normal results, notably concerning creatine kinase level. Fatigue was attributed to haloperidol which was substituted for olanzapine. Our patient left the hospital after five days without complaint. She was admitted again three days later with acute back pain. Examination showed camptocormia and tenderness in paraspinal muscles. Creatine kinase level was elevated (2986 UI/L). Magnetic resonance imaging showed necrosis and edema in paraspinal muscles. Olanzapine was discontinued. Pain resolved quickly and muscle enzymes were normalized within ten days. Risperidone was later introduced without significant side-effect. The camptocormic posture had disappeared when the patient was seen as an out-patient one year later.</p> <p>Conclusions</p> <p>Camptocormia is a heterogeneous syndrome of various causes. We believe that our case illustrates the need to search for paraspinal muscle damage, including drug-induced rhabdomyolysis, in patients presenting with acute-onset bent spine syndrome. Although rare, the occurrence of camptocormia induced by olanzapine must be considered.</p

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues
    • …
    corecore