32 research outputs found

    Clonal diversity and detection of carbapenem resistance encoding genes among multidrug-resistant Acinetobacter baumannii isolates recovered from patients and environment in two intensive care units in a Moroccan hospital

    Get PDF
    Background Carbapenem-resistant Acinetobacter baumannii has recently been defined by the World Health Organization as a critical pathogen. The aim of this study was to compare clonal diversity and carbapenemase-encoding genes of A. baumannii isolates collected from colonized or infected patients and hospital environment in two intensive care units (ICUs) in Morocco. Methods The patient and environmental sampling was carried out in the medical and surgical ICUs of Mohammed V Military teaching hospital from March to August 2015. All A. baumannii isolates recovered from clinical and environmental samples, were identified using routine microbiological techniques and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Antimicrobial susceptibility testing was performed using disc diffusion method. The carbapenemase-encoding genes were screened for by PCR. Clonal relatedness was analyzed by digestion of the DNA with low frequency restriction enzymes and pulsed field gel electrophoresis (PFGE) and the multi locus sequence typing (MLST) was performed on two selected isolates from two major pulsotypes. Results A total of 83 multidrug-resistant A. baumannii isolates were collected: 47 clinical isolates and 36 environmental isolates. All isolates were positive for the bla OXA51-like and bla OXA23-like genes. The coexistence of bla NDM-1 /bla OXA-23-like and bla OXA 24-like /bla OXA-23-like were detected in 27 (32.5%) and 2 (2.4%) of A. baumannii isolates, respectively. The environmental samples and the fecally-colonized patients were significantly identified (p < 0.05) as the most common sites of isolation of NDM-1-harboring isolates. PFGE grouped all isolates into 9 distinct clusters with two major groups (0007 and 0008) containing up to 59% of the isolates. The pulsotype 0008 corresponds to sequence type (ST) 195 while pulsotype 0007 corresponds to ST 1089.The genetic similarity between the clinical and environmental isolates was observed in 80/83 = 96.4% of all isolates, belonging to 7 pulsotypes. Conclusion This study shows that the clonal spread of environmental A. baumannii isolates is related to that of clinical isolates recovered from colonized or infected patients, being both associated with a high prevalence of the bla OXA23-like and bla NDM-1genes. These findings emphasize the need for prioritizing the bio-cleaning of the hospital environment to control and prevent the dissemination of A. baumannii clonal lineages

    Epidemiology of Carbapenemase-Producing Enterobacteriaceae and Acinetobacter baumannii in Mediterranean Countries

    No full text
    The emergence and global spread of carbapenemase-producing Enterobacteriaceae and Acinetobacter baumannii are of great concern to health services worldwide. These β-lactamases hydrolyse almost all β-lactams, are plasmid-encoded, and are easily transferable among bacterial species. They are mostly of the KPC, VIM, IMP, NDM, and OXA-48 types. Their current extensive spread worldwide in Enterobacteriaceae is an important source of concern. Infections caused by these bacteria have limited treatment options and have been associated with high mortality rates. Carbapenemase producers are mainly identified among Klebsiella pneumoniae, Escherichia coli, and A. baumannii and still mostly in hospital settings and rarely in the community. The Mediterranean region is of interest due to a great diversity and population mixing. The prevalence of carbapenemases is particularly high, with this area constituting one of the most important reservoirs. The types of carbapenemase vary among countries, partially depending on the population exchange relationship between the regions and the possible reservoirs of each carbapenemase. This review described the epidemiology of carbapenemases produced by enterobacteria and A. baumannii in this part of the world highlighting the worrisome situation and the need to screen and detect these enzymes to prevent and control their dissemination

    Dissemination of OXA-48- and NDM-1-Producing Enterobacterales Isolates in an Algerian Hospital

    No full text
    Multidrug-resistant (MDR) Enterobacterales remain an increasing problem in Algeria, notably due to the emergence of carbapenemase producers. We investigated the molecular characteristics of carbapenem-resistant Enterobacterales isolates recovered from outpatients and inpatients in Eastern Algeria. Non-repetitive Enterobacterales with reduced susceptibility to carbapenems were consecutively collected from clinical specimens in Annaba University Hospital (Algeria) between April 2016 and December 2018. Isolates were characterized with regard to antibiotic resistance, resistome and virulome content, clonality, and plasmid support. Of the 168 isolates analyzed, 29 (17.3%) were carbapenemase producers and identified as K. pneumoniae (n = 23), E. coli (n = 5), and E. cloacae (n = 1). blaOXA-48 was the most prevalent carbapenemase-encoding gene (n = 26/29), followed by blaNDM-1 gene (n = 3/29). K. pneumoniae isolates harbored some virulence traits (entB, ugeF, ureA, mrkD, fimH), whereas E. coli had a commensal origin (E, A, and B1). Clonality analysis revealed clonal expansions of ST101 K. pneumoniae and ST758 E. coli. Plasmid analysis showed a large diversity of incompatibility groups, with a predominance of IncM (n = 26, 89.7%). A global dissemination of OXA-48-producing Enterobacterales in the Algerian hospital but also the detection of NDM-1-producing E. coli in community settings were observed. The importance of this diffusion must be absolutely investigated and controlled

    First Case of NDM-1-Producing Klebsiella pneumoniae in Annaba University Hospital, Algeria

    No full text
    International audienceAIM:The aim of this study was to characterize two carbapenem-resistant Klebsiella pneumoniae isolates recovered from urine samples in a patient hospitalized at Annaba University hospital (Algeria) in 2014.RESULTS:Two K. pneumoniae isolates were studied because they proved resistant to almost all antibiotics tested with a high level resistance to ertapenem (minimum inhibitory concentration = 32 mg/L). The results of modified Hodge test and combined disk test (ROSCO Diagnostica, Taastrup, Denmark) were positive. The two isolates harbored the blaNDM-1 gene and one was also positive for blaCTX-M-15. Screening of aminoglycoside-modifying enzymes and plasmid-mediated quinolone resistance contents detected aac(6')-Ib-cr, aac(3')-II, qnrB2, and oqxAB in both isolates. Multilocus sequence typing demonstrated that the two isolates belonged to sequence type 147. However, repetitive sequence-based PCR and pulsed-field gel electrophoresis showed that they were not clonally related. The blaNDM-1 gene and all other resistant genes were contained on an IncR plasmid of c.a. 85 kb.CONCLUSIONS:This study comprises the first identification of NDM-1-producing K. pneumoniae in Algeria. We thus confirm the concerning worldwide dissemination of this carbapenemase that involves the emergence of the IncR plasmid and the success of the ST147 clonal complex harboring it
    corecore