9 research outputs found

    In vivo brain sampling using a microextraction probe reveals metabolic changes in rodents after deep brain stimulation

    No full text
    Brain metabolomics is an emerging field that complements the more traditional approaches of neuroscience. However, typical brain metabolomics workflows require that animals be sacrificed and tend to involve tedious sample preparation steps. Microdialysis, the standard technique to study brain metabolites in vivo, is encumbered by significant limitations -in the analysis of hydrophobic metabolites, which are prone to adsorption losses on microdialysis equipment. An alternative sampling method suitable for in vivo brain studies is solid-phase microextraction (SPME). In SPME, a small probe coated with a biocompatible polymer is employed to extract/enrich analytes from biological matrices. In this work, we report the use of SPME and liquid chromatography-mass spectrometry for untargeted in vivo analysis of rodent's brains after deep brain stimulation (DBS). First, metabolite changes occurring in brain hippocampi after application of 3 h of DBS to the animals' prefrontal cortex were monitored with the proposed approach. As SPME allows for nonlethal sampling, the same group of animals was sampled again after 8 days of daily DBS therapy. After acute DBS, we detected changes in a broad range of metabolites, including the amino acid citrulline, which may reflect changes in nitric oxide production, as well as various phospho- and glycosphingolipids. Measurements conducted after chronic DBS showed a decrease in hippocampal corticosterone, indicating that DBS may have a regulatory effect in the hypothalamic-pituitary-adrenal axis. Our findings demonstrate the potential of in vivo SPME as a tool of scientific and clinical interest capable of revealing changes in a wide range of metabolites in brain tissue

    Antidepressant-Like Effects of Medial Prefrontal Cortex Deep Brain Stimulation in Rats

    No full text
    Background: Subcallosal cingulate gyrus (SCG) deep brain stimulation (DBS) is being investigated as a treatment for major depression. We report on the effects of ventromedial prefrontal cortex (vmPFC) DBS in rats, focusing on possible mechanisms involved in an antidepressant-like response in the forced swim test (FST). Methods: The outcome of vmPFC stimulation alone or combined with different types of lesions, including serotonin (5-HT) or nore-pineprhine (NE) depletion, was characterized in the FST. We also explored the effects of DBS on novelty-suppressed feeding, learned helplessness, and sucrose consumption in animals predisposed to helplessness. Results: Stimulation at parameters approximating those used in clinical practice induced a significant antidepressant-like response in the FST. Ventromedial PFC lesions or local muscimol injections did not lead to a similar outcome. However, animals treated with vmPFC ibotenic acid lesions still responded to DBS, suggesting that the modulation of fiber near the electrodes could play a role in the antidepressant-like effects of stimulation. Also important was the integrity of the serotonergic system, as the effects of DBS in the FST were completely abolished in animals bearing 5-HT, but not NE, depleting lesions. In addition, vmPFC stimulation induced a sustained increase in hippocampal 5-HT levels. Preliminary work with other models showed that DBS was also able to influence specific aspects of depressive-like states in rodents, including anxiety and anhedonia, but not helplessness. Conclusions: Our study suggests that vmPFC DES in rats maybe useful to investigate mechanisms involved in the antidepressant effects of SCG DBS.Ontario Mental Health Foundatio
    corecore