91 research outputs found
Dynamical principles in neuroscience
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and Fundación BBVA
No advantage for remembering horizontal over vertical spatial locations learned from a single viewpoint
Previous behavioral and neurophysiological research has shown better memory for horizontal than for vertical locations. In these studies, participants navigated toward these locations. In the present study we investigated whether the orientation of the spatial plane per se was responsible for this difference. We thus had participants learn locations visually from a single perspective and retrieve them from multiple viewpoints. In three experiments, participants studied colored tags on a horizontally or vertically oriented board within a virtual room and recalled these locations with different layout orientations (Exp. 1) or from different room-based perspectives (Exps. 2 and 3). All experiments revealed evidence for equal recall performance in horizontal and vertical memory. In addition, the patterns for recall from different test orientations were rather similar. Consequently, our results suggest that memory is qualitatively similar for both vertical and horizontal two-dimensional locations, given that these locations are learned from a single viewpoint. Thus, prior differences in spatial memory may have originated from the structure of the space or the fact that participants navigated through it. Additionally, the strong performance advantages for perspective shifts (Exps. 2 and 3) relative to layout rotations (Exp. 1) suggest that configurational judgments are not only based on memory of the relations between target objects, but also encompass the relations between target objects and the surrounding room—for example, in the form of a memorized view
Recommended from our members
Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder.
Bipolar disorder (BD) is characterized by emotional dysregulation and cognitive deficits associated with abnormal connectivity between subcortical-primarily emotional processing regions-and prefrontal regulatory areas. Given the significant contribution of genetic factors to BD, studies in unaffected first-degree relatives can identify neural mechanisms of genetic risk but also resilience, thus paving the way for preventive interventions. Dynamic causal modeling (DCM) and random-effects Bayesian model selection were used to define and assess connectomic phenotypes linked to facial affect processing and working memory in a demographically matched sample of first-degree relatives carefully selected for resilience (n=25), euthymic patients with BD (n=41) and unrelated healthy controls (n=46). During facial affect processing, patients and relatives showed similarly increased frontolimbic connectivity; resilient relatives, however, evidenced additional adaptive hyperconnectivity within the ventral visual stream. During working memory processing, patients displayed widespread hypoconnectivity within the corresponding network. In contrast, working memory network connectivity in resilient relatives was comparable to that of controls. Our results indicate that frontolimbic dysfunction during affect processing could represent a marker of genetic risk to BD, and diffuse hypoconnectivity within the working memory network a marker of disease expression. The association of hyperconnectivity within the affect-processing network with resilience to BD suggests adaptive plasticity that allows for compensatory changes and encourages further investigation of this phenotype in genetic and early intervention studies
A Whole-Genome SNP Association Study of NCI60 Cell Line Panel Indicates a Role of Ca2+ Signaling in Selenium Resistance
Epidemiological studies have suggested an association between selenium intake and protection from a variety of cancer. Considering this clinical importance of selenium, we aimed to identify the genes associated with resistance to selenium treatment. We have applied a previous methodology developed by our group, which is based on the genetic and pharmacological data publicly available for the NCI60 cancer cell line panel. In short, we have categorized the NCI60 cell lines as selenium resistant and sensitive based on their growth inhibition (GI50) data. Then, we have utilized the Affymetrix 125K SNP chip data available and carried out a genome-wide case-control association study for the selenium sensitive and resistant NCI60 cell lines. Our results showed statistically significant association of four SNPs in 5q33–34, 10q11.2, 10q22.3 and 14q13.1 with selenium resistance. These SNPs were located in introns of the genes encoding for a kinase-scaffolding protein (AKAP6), a membrane protein (SGCD), a channel protein (KCNMA1), and a protein kinase (PRKG1). The knock-down of KCNMA1 by siRNA showed increased sensitivity to selenium in both LNCaP and PC3 cell lines. Furthermore, SNP-SNP interaction (epistasis) analysis indicated the interactions of the SNPs in AKAP6 with SGCD as well as SNPs in AKAP6 with KCNMA1 with each other, assuming additive genetic model. These genes were also all involved in the Ca2+ signaling, which has a direct role in induction of apoptosis and induction of apoptosis in tumor cells is consistent with the chemopreventive action of selenium. Once our findings are further validated, this knowledge can be translated into clinics where individuals who can benefit from the chemopreventive characteristics of the selenium supplementation will be easily identified using a simple DNA analysis
Negative symptoms in schizophrenia: A comprehensive review of electrophysiological investigation
Clinical heterogeneity is a confound common to all of schizophrenia research. Deficit schizophrenia has been proposed as a homogeneous disease entity within the schizophrenia syndrome. Utilizing the Schedule for the Deficit Syndrome (SDS) has allowed the definition of a subgroup dominated by persistent clusters of negative symptoms. While a number of studies have appeared over the years examining the electrophysiological correlates of the cluster of negative symptoms in schizophrenia, only a few studies have actually focused on the deficit syndrome (DS). PubMed as well as MEDLINE were searched for all reports indexed for "negative symptoms" or "deficit syndrome" and one of the following electrophysiology assessment tools: electroencephalography (EEG), evoked potentials (EPs), or polysomnography (PSG). While this line of research is evidently in its infancy, two significant trends emerge. First, spectral EEG studies link increased slow wave activity during wakefulness to the prevalence of negative symptoms. Secondly, sleep studies point to an association between decrease in slow wave sleep and prevalence of negative symptoms. Several studies also indicate a relationship of negative symptoms with reduced alpha activity. A host of other abnormalities - including sensory gating and P300 attenuation - are less consistently reported. Two studies specifically addressed electrophysiology of the DS. Both studies provided evidence suggesting that the DS may be a separate disease entity and not simply a severe form of schizophrenia
Twin MRI studies on genetic and environmental determinants of brain morphology and function in the early lifespan
Neurodevelopment represents a period of increased opportunity and vulnerability, during which a complex confluence of genetic and environmental factors influences brain growth trajectories, cognitive and mental health outcomes. Recently, magnetic resonance imaging (MRI) studies on twins have increased our knowledge of the extent to which genes, the environment and their interactions shape inter-individual brain variability. The present review draws from highly salient MRI studies in young twin samples to provide a robust assessment of the heritability of structural and functional brain changes during development. The available studies suggest that (as with many other traits), global brain morphology and network organization are highly heritable from early childhood to young adulthood. Conversely, genetic correlations among brain regions exhibit heterogeneous trajectories, and this heterogeneity reflects the progressive, experience-related increase in brain network complexity. Studies also support the key role of environment in mediating brain network differentiation via changes of genetic expression and hormonal levels. Thus, rest- and task-related functional brain circuits seem to result from a contextual and dynamic expression of heritability
- …