120 research outputs found

    Structural Characterization of Mesoporous Thin Film Architectures: A Tutorial Overview

    Get PDF
    Mesoporous thin film architectures are an important class of materials that exhibit unique properties, which include high surface area, versatile surface functionalization, and bicontinuous percolation paths through a broad library of pore arrangements on the 10 nm length scale. Although porosimetry of bulk materials via sorption techniques is common practice, the characterization of thin mesoporous films with small sample volumes remains a challenge. A range of techniques are geared toward providing information over pore morphology, pore size distribution, surface area and overall porosity, but none of them offers a holistic evaluation and results are at times inconsistent. In this work, we present a tutorial overview for the reliable structural characterization of mesoporous films. Three model samples with variable pore size and porosity prepared by block copolymer (BCP) coassembly serve for a rational comparison. Various techniques are assessed side-by-side, including scanning electron microscopy (SEM), atomic force microscopy (AFM), grazing incidence small-angle X-ray scattering (GISAXS), and ellipsometric porosimetry (EP). We critically discuss advantages and limitations of each technique and provide guidelines for reliable implementation

    In situ observation of heat-induced degradation of perovskite solar cells

    Get PDF
    The lack of thermal stability of perovskite solar cells is hindering the progress of this technology towards adoption in the consumer market. Different pathways of thermal degradation are activated at different temperatures in these complex nanostructured hybrid composites. Thus, it is essential to explore the thermal response of the mesosuperstructured composite device to engineer materials and operating protocols. Here we produce devices according to four well-established recipes, and characterize their photovoltaic performance as they are heated within the operational range. The devices are analysed using transmission electron microscopy as they are further heated in situ, to monitor changes in morphology and chemical composition. We identify mechanisms for structural and chemical changes, such as iodine and lead migration, which appear to be correlated to the synthesis conditions. In particular, we identify a correlation between exposure of the perovskite layer to air during processing and elemental diffusion during thermal treatment. Solar cells based on lead halide perovskite composites have become increasingly popular in the past few years owing to a combination of low synthesis cost and high power conversion efficiency, with certified values in excess of 20% (refs 1,2,3,4,5). However, the stability of such devices is a concern—it is well known that heating at or above around 85 ∘C, a temperature close to those reached during normal operation in full sunlight, performance degrades rapidly, and such instability is exacerbated by exposure to moisture; systematic thermal and ageing studies are required to understand such degradation processes. Changes happen in both the organic and inorganic components of the cells; the resilience of the perovskite layer, in particular, is expected to become a limiting factor once different hole-conducting materials (or hole-conductor-free cells) are developed. To overcome this limitation, it is vital to understand the degradation pathways of the structures involved, which here are observed at nanometre-scale spatial resolution in situ, inside an analytical scanning transmission electron microscope (STEM), while the composition is monitored with elemental mapping through energy-dispersive X-ray analysis (EDX). The analysis of such devices is challenging owing to several factors. The spatial dimensions relevant to the fabrication and the operation of the cells are in the 1–100 nm range, and the materials are easily damaged by exposure to an electron beam in a TEM, requiring careful tuning of the electron dose. The system also includes organic and inorganic components in an assembly with complex chemistry and morphology. Finally, the rapid changes to the devices in air and the low degradation temperatures pose an additional challenge to the experiment, which needs to be timed appropriately and carefully executed. The monitoring of this process is made possible by combining several recent advances in TEM technology. The use of high-brightness electron guns and detectors with large collection areas allows the fast acquisition of high-quality EDX maps with limited electron dose on the sample; the signal-to-noise ratio of the maps can be further increased by applying denoising algorithms (PCA, principal components analysis) within an open-source software suite. The development of novel in situ heating holders for TEM, based on micro-heaters and featuring high stability and fast response, was also crucial—in particular, the holder used here allows very precise control (sub-degree) at values just above room temperature, as well as providing fast heating and cooling (a few seconds for the temperatures in use in this paper). The good spatial stability of the holder is crucial in acquiring EDX maps.G.D., S.C., and C.D. acknowledge funding from ERC under grant number 259619 PHOTO EM. C.D. acknowledges financial support from the EU under grant number 312483 ESTEEM2. F.M., L.C. and A.D.C. acknowledge funding from “Polo Solare Organico” Regione Lazio, the “DSSCX” MIURPRIN2010 and FP7 ITN “Destiny”. G.D and S.C. thank Dr. Francisco de la Peña and Dr. Pierre Burdet for assistance with PCA analysis.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nenergy.2015.1

    Gold and iodine diffusion in large area perovskite solar cells under illumination.

    Get PDF
    Operational stability is the main issue hindering the commercialisation of perovskite solar cells. Here, a long term light soaking test was performed on large area hybrid halide perovskite solar cells to investigate the morphological and chemical changes associated with the degradation of photovoltaic performance occurring within the devices. Using Scanning Transmission Electron Microscopy (STEM) in conjunction with EDX analysis on device cross sections, we observe the formation of gold clusters in the perovskite active layer as well as in the TiO2 mesoporous layer, and a severe degradation of the perovskite due to iodine migration into the hole transporter. All these phenomena are associated with a drastic drop of all the photovoltaic parameters. The use of advanced electron microscopy techniques and data processing provides new insights on the degradation pathways, directly correlating the nanoscale structure and chemistry to the macroscopic properties of hybrid perovskite devices.European Research Council (291522), European Research Council (259619

    Structural properties of thin-film ferromagnetic topological insulators

    Get PDF
    We present a comprehensive study of the crystal structure of the thin-film, ferromagnetic topological insulator (Bi, Sb)2 xVxTe3 .The dissipationless quantum anomalous Hall edge states it manifests are of particular interest for spintronics, as a natural spin filter or pure spin source, and as qubits for topological quantum computing. For ranges typically used in experiments, we investigate the effect of doping, substrate choice and film thickness on the (Bi, Sb)2Te3 unit cell using high-resolution X-ray diffractometry. Scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements provide local structural and interfacial information. We find that the unit cell is unaffected in-plane by vanadium doping changes, and remains unchanged over a thickness range of 4–10 quintuple layers (1 QL 1 nm). The in-plane lattice parameter (a) also remains the same in films grown on different substrate materials. However, out-of-plane the c-axis increases with the doping level and thicknesses >10 QL, and is potentially reduced in films grown on Si (1 1 1).This work was financially supported by the Leverhulme Trust (RPG-2013-337), the European Commission through a Marie Curie Grant (MSCA-IFEF-ST No. 656485-Spin3), the Royal Society, and the Engineering and Physical Sciences Research Council (EP/P026311/1).C.-Z.C. and J.S.M. acknowledge support from from the NSF (DMR-1207469, DMR-1700137), ONR (N00014-13-1-0301, N00014-16-1-2657), and the STC Center for Integrated Quantum Materials under NSF grant DMR-1231319

    Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces.

    Get PDF
    The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces.Engineering and Physical Sciences Research Council (Grant ID: NanoDTC EP/G037221/1)This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms905

    Stability and Dark Hysteresis Correlate in NiO-Based Perovskite Solar Cells

    Get PDF
    © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim In perovskite solar cells (PSCs), the interfaces are a weak link with respect to degradation. Electrochemical reactivity of the perovskite's halides has been reported for both molecular and polymeric hole selective layers (HSLs), and here it is shown that also NiO brings about this decomposition mechanism. Employing NiO as an HSL in p–i–n PSCs with power conversion efficiency (PCE) of 16.8%, noncapacitive hysteresis is found in the dark, which is attributable to the bias-induced degradation of perovskite/NiO interface. The possibility of electrochemically decoupling NiO from the perovskite via the introduction of a buffer layer is explored. Employing a hybrid magnesium-organic interlayer, the noncapacitive hysteresis is entirely suppressed and the device's electrical stability is improved. At the same time, the PCE is improved up to 18% thanks to reduced interfacial charge recombination, which enables more efficient hole collection resulting in higher Voc and FF

    Catalyst‐mediated enhancement of carbon nanotube textiles by laser irradiation: Nanoparticle sweating and bundle alignment

    Get PDF
    The photonic post-processing of suspended carbon nanotube (CNT) ribbons made by floating catalyst chemical vapor deposition (FC-CVD) results in selective sorting of the carbon nanotubes present. Defective, thermally non-conductive or unconnected CNTs are burned away, in some cases leaving behind a highly crystalline (as indicated by the Raman G:D ratio), highly conductive network. However, the improvement in crystallinity does not always occur but is dependent on sample composition. Here, we report on fundamental features, which are observed for all samples. Pulse irradiation (not only by laser but also white light camera flashes, as well as thermal processes such as Joule heating) lead to (1) the sweating-out of catalyst nanoparticles resulting in molten catalyst beads of up to several hundreds of nanometres in diameter on the textile surface and (2) a significant improvement in CNT bundle alignment. The behavior of the catalyst beads is material dependent. Here, we show the underlying mechanisms of the photonic post-treatment by modelling the macro- and microstructural changes of the CNT network and show that it is mainly the amount of residual catalyst which determines how much energy these materials can withstand before their complete decomposition.</jats:p

    nanoscale characterisation of hybrid photovoltaic cells based on c61 capped cdse qds

    Get PDF
    Hybrid solar cells based on 1,2 methanofullerene (C61) capped CdSe and poly (3-hexylthiophene) (P3HT) were been investigated through a range of techniques. High resolution transmission electron microscopy (HRTEM) was used to characterize size, morphology and crystal structure of as-grown and C61-capped CdSe quantum dots. Cross sectional lamellar specimens were prepared from full photovoltaic devices using a focused ion beam milling approach. The sections were analysed by high angle annular dark field imaging in scanning TEM mode to determine the morphology of the device, in particular the intermixing of P3HT and capped quantum dots
    corecore