472 research outputs found

    Feedlot Performance of Growing Steer Calves on a High Roughage Ration Supplemented with a High Bypass or an All Natural Protein Supplement

    Get PDF
    This study was undertaken to compare a urea-based protein supplement containing meat and bone meal and dehydrated alfalfa as the primary by-pass protein source to a protein supplement containing soybean meal and sunflower meal as the protein sources

    Ubiquitin and AP180 Regulate the Abundance of GLR-1 Glutamate Receptors at Postsynaptic Elements in C. elegans

    Get PDF
    AbstractRegulated delivery and removal of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (GluRs) from postsynaptic elements has been proposed as a mechanism for regulating synaptic strength. Here we test the role of ubiquitin in regulating synapses that contain a C. elegans GluR, GLR-1. GLR-1 receptors were ubiquitinated in vivo. Mutations that decreased ubiquitination of GLR-1 increased the abundance of GLR-1 at synapses and altered locomotion behavior in a manner that is consistent with increased synaptic strength. By contrast, overexpression of ubiquitin decreased the abundance of GLR-1 at synapses and decreased the density of GLR-1-containing synapses, and these effects were prevented by mutations in the unc-11 gene, which encodes a clathrin adaptin protein (AP180). These results suggest that ubiquitination of GLR-1 receptors regulates synaptic strength and the formation or stability of GLR-1-containing synapses

    Portraying the hosts: Stellar science from planet searches

    Full text link
    Information on the full session can be found on this website: https://sites.google.com/site/portrayingthehostscs18/We present a compendium of the splinter session on stellar science from planet searches that was organized as part of the Cool Stars 18 conference. Seven speakers discussed techniques to infer stellar information from radial velocity, transit and microlensing data, as well as new instrumentation and missions designed for planet searches that will provide useful for the study of the cool stars

    Fidelity for Multimode Thermal Squeezed States

    Full text link
    In the theory of quantum transmission of information the concept of fidelity plays a fundamental role. An important class of channels, which can be experimentally realized in quantum optics, is that of Gaussian quantum channels. In this work we present a general formula for fidelity in the case of two arbitrary Gaussian states. From this formula one can get a previous result (H. Scutaru, J. Phys. A: Mat. Gen {\bf 31}, 3659 (1998)), for the case of a single mode; or, one can apply it to obtain a closed compact expression for multimode thermal states.Comment: 5 pages, RevTex, submitted to Phys. Rev.

    Correlation entropy of synaptic input-output dynamics

    Full text link
    The responses of synapses in the neocortex show highly stochastic and nonlinear behavior. The microscopic dynamics underlying this behavior, and its computational consequences during natural patterns of synaptic input, are not explained by conventional macroscopic models of deterministic ensemble mean dynamics. Here, we introduce the correlation entropy of the synaptic input-output map as a measure of synaptic reliability which explicitly includes the microscopic dynamics. Applying this to experimental data, we find that cortical synapses show a low-dimensional chaos driven by the natural input pattern.Comment: 7 pages, 6 Figures (7 figure files

    Bures distance between two displaced thermal states

    Full text link
    The Bures distance between two displaced thermal states and the corresponding geometric quantities (statistical metric, volume element, scalar curvature) are computed. Under nonunitary (dissipative) dynamics, the statistical distance shows the same general features previously reported in the literature by Braunstein and Milburn for two--state systems. The scalar curvature turns out to have new interesting properties when compared to the curvature associated with squeezed thermal states.Comment: 3 pages, RevTeX, no figure

    Quantifying impacts of short-term plasticity on neuronal information transfer

    Get PDF
    Short-term changes in efficacy have been postulated to enhance the ability of synapses to transmit information between neurons, and within neuronal networks. Even at the level of connections between single neurons, direct confirmation of this simple conjecture has proven elusive. By combining paired-cell recordings, realistic synaptic modelling and information theory, we provide evidence that short-term plasticity can not only improve, but also reduce information transfer between neurons. We focus on a concrete example in rat neocortex, but our results may generalise to other systems. When information is contained in the timings of individual spikes, we find that facilitation, depression and recovery affect information transmission in proportion to their impacts upon the probability of neurotransmitter release. When information is instead conveyed by mean spike rate only, the influences of short-term plasticity critically depend on the range of spike frequencies that the target network can distinguish (its effective dynamic range). Our results suggest that to efficiently transmit information, the brain must match synaptic type, coding strategy and network connectivity during development and behaviour.Comment: Accepted for publication in Phys Rev E. 42 pages in referee format, 9 figure

    Synaptic Vesicles Position Complexin to Block Spontaneous Fusion

    Get PDF
    SummarySynapses continually replenish their synaptic vesicle (SV) pools while suppressing spontaneous fusion events, thus maintaining a high dynamic range in response to physiological stimuli. The presynaptic protein complexin can both promote and inhibit fusion through interactions between its α-helical domain and the SNARE complex. In addition, complexin’s C-terminal half is required for the inhibition of spontaneous fusion in worm, fly, and mouse, although the molecular mechanism remains unexplained. We show here that complexin’s C-terminal domain binds lipids through a novel protein motif, permitting complexin to inhibit spontaneous exocytosis in vivo by targeting complexin to SVs. We propose that the SV pool serves as a platform to sequester and position complexin where it can intercept the rapidly assembling SNAREs and control the rate of spontaneous fusion

    Adolescents Who Play and Spend Money in Simulated Gambling Games Are at Heightened Risk of Gambling Problems

    Get PDF
    Simulated gambling, such as playing a virtual slot machine for points rather than money, is increasingly part of the online gaming experience for youth. This study aimed to examine (1) if youth participation in simulated gambling games is associated with participation in monetary gambling; (2) if youth participation in simulated gambling games is associated with increased risk of problematic gambling when controlling for breadth of monetary gambling (i.e., number of gambling forms); and (3) if monetary expenditure and time spent playing simulated gambling games increase the risk of problematic gambling. Two samples of Australians aged 12–17 years were recruited—826 respondents through an online panel aggregator (mean age 14.1 years) and 843 respondents through advertising (mean age 14.6 years). Aim 1 was addressed using chi-square and correlation analyses. Linear multiple regression analyses were conducted to address Aims 2 and 3. The findings in both samples supported the study’s hypotheses—that (1) youth who play simulated gambling games are more likely to participate in monetary gambling, and that (2) participation and (3) time and money expenditure on simulated gambling are positively and independently associated with risk of problematic gambling when controlling for the number of monetary gambling forms, impulsivity, age and gender. To better protect young people, simulated gambling should, at minimum, emulate the consumer protection measures required for online gambling

    Integrating genetic analysis of mixed populations with a spatially explicit population dynamics model

    Get PDF
    1. Inferring the dynamics of populations in time and space is a central challenge in ecology. Intra-specific structure (for example genetically distinct sub-populations or meta-populations) may require methods that can jointly infer the dynamics of multiple populations. This is of particular importance for harvested species, for which management must balance utilization of productive populations with protection of weak ones. 2. Here we present a novel method for simultaneous learning about the spatio-temporal dynamics of multiple populations that combines genetic data with prior information about abundance and movement, akin to an integrated population modelling approach. We apply the Bayesian genetic mixed stock analysis to 17 wild and 10 hatchery-reared Baltic salmon (S. salar) stocks, quantifying uncertainty in stock composition in time and space, and in population dynamics parameters such as migration timing and speed. 3. The genetic data were informative about stock-specific movement patterns, updating priors for migration path, timing and speed. Use of a population dynamics model allowed robust interpolation of expected catch composition at areas and times with no genetic observations. Our results indicate that the commonly used "equal prior probabilities" assumption may not be appropriate for all mixed stock analyses: incorporation of prior information about stock abundance and movement resulted in more plausible and precise estimates of mixture compositions in time and space. 4. The model we present here forms the basis for optimizing the spatial and temporal allocation of harvest to support the management of mixed populations of migratory species.Peer reviewe
    corecore