37 research outputs found

    Microbial Production of Bio-Based Chemicals: A Biorefinery Perspective

    Get PDF
    A shift from fossil- to renewable biomass feedstock for the emerging bio-based economy requires the development and adoption of new sustainable technologies that are more suited for transformation of biomass components to chemicals, materials and energy. This thesis presents investigations on the development of processes based on industrial biotechnology as a key element for the production of chemicals from agro-/industrial by-products. The chemicals of interest are the ones that could potentially serve as building blocks, platforms, for other chemicals and polymers. Glycerol, a by-product of biodiesel production, was used as raw material for the production of propionic acid, 3-hydroxypropionaldehyde (3HPA) and 3-hydroxypropionic acid (3HP), while methacrylic acid (MA) was produced from 2-methyl-1,3-propanediol, a by-product of butanediol production. Different strategies to overcome the bottlenecks such as product inhibition existing in the bioprocesses for production of the chemicals were studied. Fermentation of glycerol to propionic acid was studied using Propionibacterium acidipropionici. High cell density cultivations were used to overcome the low production rate caused by slow microbial growth and product-mediated toxicity. Increasing the cell density by immobilization and sequential batch recycling improved the production rates by 2- and 6-fold, respectively, over that obtained using conventional batch fermentation. Potato juice, a by-product of potato starch processing, was shown to be a promising, inexpensive nitrogen/vitamin source for the growth of the organism and propionic acid production. Lactobacillus reuteri was employed as a whole cell biocatalyst for the conversion of glycerol to 3HPA and 3HP in aqueous solution. Production of 3HPA using glycerol dehydratase activity of the cells, limited by substrate inhibition and product toxicity, was performed in a fed-batch mode with in situ complexation of the hydroxyaldehyde with bisulfite, and subsequent removal through binding to an anion exchanger. This resulted in increase in production of 3HPA from 0.45 g/g biocatalyst in a batch process to 5.4 g/g. 3HP is formed as an oxidation product of 3HPA, however its accumulation as a product of glycerol metabolism in wild-type L. reuteri has not been reported earlier. The metabolic fluxes through the glycerol reductive and oxidative pathways were calculated using variable volume fed-batch operation. The glycerol feeding strategies were optimized to yield complete conversion of 3HPA into equimolar mixture of 3HP and 1,3PDO, the products that can be easily separated from each other. MA was quantitatively produced at high purity from 2-methyl-1,3-propanediol by a novel process involving integrated biological and chemical catalysis. Whole resting cells of Gluconobacter oxydans were used for selective oxidation of the substrate to the corresponding hydroxycarboxylic acid, which upon dehydration over TiO2 at 210 degree Celsius yielded MA. This process offers a potential, significantly greener alternative to the acetone-cyanohydrin process used for MA production, involving highly toxic substrates, large amounts of waste and greenhouse gas emissions

    An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation.

    Get PDF
    An economically sustainable process was developed for propionic acid production by fermentation of glycerol using Propionibacterium acidipropionici and potato juice, a by-product of starch processing, as a nitrogen/vitamin source. The fermentation was done as high-cell-density sequential batches with cell recycle. Propionic acid production and glycerol consumption rates were dependent on initial biomass concentration, and reached a maximum of 1.42 and 2.30gL(-1)h(-1), respectively, from 50gL(-1) glycerol at initial cell density of 23.7g(CDW)L(-1). Halving the concentration of nitrogen/vitamin source resulted in reduction of acetic and succinic acids yields by ∼39% each. At glycerol concentrations of 85 and 120gL(-1), respectively, 43.8 and 50.8gL(-1) propionic acid were obtained at a rate of 0.88 and 0.29gL(-1)h(-1) and yield of 84 and 78mol%. Succinic acid was 13g% of propionic acid and could represent a potential co-product covering the cost of nitrogen/vitamin source

    Biotransformation of glycerol to 3-hydroxypropionaldehyde: Improved production by in situ complexation with bisulfite in a fed-batch mode and separation on anion exchanger.

    Get PDF
    3-Hydroxypropionaldehyde (3HPA) is an important C3 chemical that can be produced from renewable glycerol by resting whole cells of Lactobacillus reuteri. However the process efficiency is limited due to substrate inhibition, product-mediated loss of enzyme activity and cell viability, and also formation of by-products. Complex formation of 3HPA with sodium bisulfite and subsequent binding to Amberlite IRA-400 was investigated as a means of in situ product recovery and for overcoming inhibition. The adsorption capacity and -isotherm of the resin were evaluated using the Langmuir model. The resin exhibited maximum capacity of 2.92mmol complex/g when equilibrated with 45mL solution containing an equilibrium mixture of 2.74mmol 3HPA-bisulfite complex and 2.01mmol free 3HPA. The dynamic binding capacity based on the breakthrough curve of 3HPA and its complex on passing a solution with 2.49mmol complex and 1.65mmol free 3HPA was 2.01mmol/g resin. The bound 3HPA was desorbed from the resin using 0.20M NaCl with a high purity as a mixture of complexed- and free 3HPA at a ratio of 0.77mol/mol. Fed-batch biotransformation of glycerol (818.85mmol) with in situ 3HPA complexation and separation on the bisulfite-functionalized resin resulted in an improved process with consumption of 481.36mmol glycerol yielding 325.54mmol 3HPA at a rate of 17.13mmol/h and a yield of 68 mol%. Also, the cell activity was maintained for at least 28h

    The preclinical and clinical progress of bacteriophages and their lytic enzymes : the parts are easier than the whole

    Get PDF
    The therapeutic potential of phages has been considered since their first identification more than a century ago. The evident concept of using a natural predator to treat bacterial infections has, however, since then been challenged considerably. Initially, the vast success of antibiotics almost eliminated the study of phages for therapy. Upon the renaissance of phage therapy research, the most provocative and unique properties of phages such as high specificity, self-replication and co-evolution prohibited a rapid preclinical and clinical development. On the one hand, the typical trajectory followed by small molecule antibiotics could not be simply translated into the preclinical analysis of phages, exemplified by the need for complex broad spectrum or personalized phage cocktails of high purity and the more complex pharmacokinetics. On the other hand, there was no fitting regulatory framework to deal with flexible and sustainable phage therapy approaches, including the setup and approval of adequate clinical trials. While significant advances are incrementally made to eliminate these hurdles, phage-inspired antibacterials have progressed in the slipstream of phage therapy, benefiting from the lack of hurdles that are typically associated with phage therapy. Most advanced are phage lytic enzymes that kill bacteria through peptidoglycan degradation and osmotic lysis. Both phages and their lytic enzymes are now widely considered as safe and have now progressed to clinical phase II to show clinical efficacy as pharmaceutical. Yet, more initiatives are needed to fill the clinical pipeline to beat the typical attrition rates of clinical evaluation and to come to a true evaluation of phages and phage lytic enzymes in the clinic

    Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol

    Get PDF
    Background Lactobacillus reuteri converts glycerol to 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO) via 3-hydroxypropionaldehyde (3HPA) as an intermediate using enzymes encoded in its propanediol-utilization (pdu) operon. Since 3HP, 1,3PDO and 3HPA are important building blocks for the bio-based chemical industry, L. reuteri can be an attractive candidate for their production. However, little is known about the kinetics of glycerol utilization in the Pdu pathway in L. reuteri. In this study, the metabolic fluxes through the Pdu pathway were determined as a first step towards optimizing the production of 3HPA, and co-production of 3HP and 1,3PDO from glycerol. Resting cells of wild-type (DSM 20016) and recombinant (RPRB3007, with overexpressed pdu operon) strains were used as biocatalysts. Results The conversion rate of glycerol to 3HPA by the resting cells of L. reuteri was evaluated by in situ complexation of the aldehyde with carbohydrazide to avoid the aldehyde-mediated inactivation of glycerol dehydratase. Under operational conditions, the specific 3HPA production rate of the RPRB3007 strain was 1.9 times higher than that of the wild-type strain (1718.2 versus 889.0 mg/gCDW.h, respectively). Flux analysis of glycerol conversion to 1,3PDO and 3HP in the cells using multi-step variable-volume fed-batch operation showed that the maximum specific production rates of 3HP and 1,3PDO were 110.8 and 93.7 mg/gCDW.h, respectively, for the wild-type strain, and 179.2 and 151.4 mg/gCDW.h, respectively, for the RPRB3007 strain. The cumulative molar yield of the two compounds was ~1 mol/mol glycerol and their molar ratio was ~1 mol3HP/mol1,3PDO. A balance of redox equivalents between the glycerol oxidative and reductive pathway branches led to equimolar amounts of the two products. Conclusions Metabolic flux analysis was a useful approach for finding conditions for maximal conversion of glycerol to 3HPA, 3HP and 1,3PDO. Improved specific production rates were obtained with resting cells of the engineered RPRB3007 strain, highlighting the potential of metabolic engineering to render an industrially sound strain. This is the first report on the production of 3HP and 1,3PDO as sole products using the wild-type or mutant L. reuteri strains, and has laid ground for further work on improving the productivity of the biotransformation process using resting cells

    Improved propionic acid production from glycerol: combining cyclic batch-and sequential batch fermentations with optimal nutrient composition

    Get PDF
    Propionic acid was produced from glycerol using Propionibacterium acidipropionici. In this study, the impact of the concentrations of carbon and nitrogen sources, and of different modes of high cell density fermentations on process kinetics and -efficiency was investigated. Three-way ANOVA analysis and batch cultivations at varying C/N ratios at pH 6.5 revealed that propionic acid production rate is significantly influenced by yeast extract concentration. Glycerol to yeast extract ratio (w w−1) of 3:1 was required for complete glycerol consumption, while maintaining the volumetric productivity. Using this optimum C/N ratio for propionic acid production in cyclic batch fermentation gave propionate yield up to 93 mol% and productivity of 0.53 g L−1 h−1. Moreover, sequential batch fermentation with cell recycling resulted in production rates exceeding 1 g L−1 h−1 at initial glycerol up to 120 g L−1, and a maximum of 1.63 g L−1 h−1 from 90 g L−1 glycerol

    Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis

    Get PDF
    Background 3-Hydroxypropionic acid (3HP) and acrylic acid (AA) are industrially important platform- and secondary chemical, respectively. Their production from renewable resources by environment-friendly processes is desirable. In the present study, both chemicals were almost quantitatively produced from biodiesel-derived glycerol by an integrated process involving microbial and chemical catalysis. Results Glycerol was initially converted in a fed-batch mode of operation to equimolar quantities of 3HP and 1,3-propanediol (1,3PDO) under anaerobic conditions using resting cells of Lactobacillus reuteri as a biocatalyst. The feeding rate of glycerol was controlled at 62.5 mg/gCDW.h which is half the maximum metabolic flux of glycerol to 3HP and 1,3PDO through the L. reuteri propanediol-utilization (pdu) pathway to prevent accumulation of the inhibitory intermediate, 3-hydroxypronionaldehyde (3HPA). Subsequently, the cell-free supernatant containing the mixture of 3HP and 1,3PDO was subjected to selective oxidation under aerobic conditions using resting cells of Gluconobacter oxydans where 1,3PDO was quantitatively converted to 3HP in a batch system. The optimum conditions for the bioconversion were 10 g/L substrate and 5.2 g/L cell dry weight. Higher substrate concentrations led to enzyme inhibition and incomplete conversion. The resulting solution of 3HP was dehydrated to AA over titanium dioxide (TiO2) at 230 °C with a yield of >95 %. Conclusions The present study represents the first report on an integrated process for production of acrylic acid at high purity and -yield from glycerol through 3HP as intermediate without any purification step. The proposed process could have potential for industrial production of 3HP and AA after further optimization
    corecore