202 research outputs found

    Effect of valdecoxib pretreatment on pain and secondary hyperalgesia: a randomized controlled trial in healthy volunteers [ISRCTN05282752, NCT00260325]

    Get PDF
    BACKGROUND: Induction of the COX-2 isoenzyme appears to play a major role in the genesis of central sensitization after nociceptive stimulation. This study aimed to investigate the efficacy of a single, oral dose of the specific COX-2 inhibitor-valdecoxib in attenuating the central sensitization – induced secondary hyperalgesia in a heat/capsaicin pain model in healthy volunteers. METHODS: The study was a randomized, double blind, placebo controlled, crossover, single dose efficacy trial using 20 healthy volunteers. Two hours following placebo or 40 mg, PO valdecoxib, participants underwent skin sensitization with heat/capsaicin, as well as supra-threshold pain and re-kindling measurements according to an established, validated pain model. Subjects rated pain intensity and unpleasantness on a visual analog scale and the area of secondary hyperalgesia was serially mapped. RESULTS: The area of secondary hyperalgesia produced after 40 mg of valdecoxib was no different than that after placebo. Furthermore, there were no significantly relevant differences when volunteers were treated with valdecoxib or placebo in relation to either cold- or hot pain threshold or the intensity of pain after supra-threshold, thermal pain stimulation. CONCLUSION: We demonstrated that a single, oral dose of valdecoxib when does not attenuate secondary hyperalgesia induced by heat/capsaicin in a cutaneous sensitization pain model in healthy volunteers

    Bacterial Symbiosis Maintenance in the Asexually Reproducing and Regenerating Flatworm Paracatenula galateia

    Get PDF
    Bacteriocytes set the stage for some of the most intimate interactions between animal and bacterial cells. In all bacteriocyte possessing systems studied so far, de novo formation of bacteriocytes occurs only once in the host development, at the time of symbiosis establishment. Here, we present the free-living symbiotic flatworm Paracatenula galateia and its intracellular, sulfur-oxidizing bacteria as a system with previously undescribed strategies of bacteriocyte formation and bacterial symbiont transmission. Using thymidine analogue S-phase labeling and immunohistochemistry, we show that all somatic cells in adult worms – including bacteriocytes – originate exclusively from aposymbiotic stem cells (neoblasts). The continued bacteriocyte formation from aposymbiotic stem cells in adult animals represents a previously undescribed strategy of symbiosis maintenance and makes P. galateia a unique system to study bacteriocyte differentiation and development. We also provide morphological and immunohistochemical evidence that P. galateia reproduces by asexual fragmentation and regeneration (paratomy) and, thereby, vertically transmits numerous symbiont-containing bacteriocytes to its asexual progeny. Our data support the earlier reported hypothesis that the symbiont population is subjected to reduced bottleneck effects. This would justify both the codiversification between Paracatenula hosts and their Candidatus Riegeria symbionts, and the slow evolutionary rates observed for several symbiont genes

    Mutual trust between leader and subordinate and employee outcomes

    Get PDF
    Stable and enduring cooperative relationships among people are primarily based on mutual trust. However, little evidence exists about the effects of mutual trust between supervisor and subordinate on work outcomes. To understand better the dynamics of trust in supervisor–subordinate relationships, we examined how mutual trust between supervisor and subordinate is associated with work outcomes. Based on a sample of 247 subordinate–supervisor pairs, multilevel analyses revealed a positive effect of perceived mutual trust on task performance and interpersonal facilitation after controlling for trust in leader and felt trust. In addition, task performance and interpersonal facilitation increased as trust in leader and felt trust or trust in subordinate both increased

    Establishment, molecular and biological characterization of HCB-514: a novel human cervical cancer cell line

    Get PDF
    Cervical cancer is the fourth most common cancer in women. Although cure rates are high for early stage disease, clinical outcomes for advanced, metastatic, or recurrent disease remain poor. To change this panorama, a deeper understanding of cervical cancer biology and novel study models are needed. Immortalized human cancer cell lines such as HeLa constitute crucial scientific tools, but there are few other cervical cancer cell lines available, limiting our understanding of a disease known for its molecular heterogeneity. This study aimed to establish novel cervical cancer cell lines derived from Brazilian patients. We successfully established one (HCB-514) out of 35 cervical tumors biopsied. We confirmed the phenotype of HCB-514 by verifying its' epithelial and tumor origin through cytokeratins, EpCAM and p16 staining. It was also HPV-16 positive. Whole-exome sequencing (WES) showed relevant somatic mutations in several genes including BRCA2, TGFBR1 and IRX2. A copy number variation (CNV) analysis by nanostring and WES revealed amplification of genes mainly related to kinases proteins involved in proliferation, migration and cell differentiation, such as EGFR, PIK3CA, and MAPK7. Overexpression of EGFR was confirmed by phospho RTK-array and validated by western blot analysis. Furthermore, the HCB-514 cell line was sensitive to cisplatin. In summary, this novel Brazilian cervical cancer cell line exhibits relevant key molecular features and constitutes a new biological model for pre-clinical studies.Barretos Cancer Hospital Research Support Department (NAP) for sample collection, Barretos Cancer Hospital Biobank for sample processing, Dr. FlΓ‘via de Paula and Gabriela Fernandes for technical support of STRs and BRCA2 Sanger validation, respectively, and Dr. Laura Musselwhite (Duke University) for revising the manuscript. This study was supported by grants from the FINEP (MCTI/FINEP/MS/SCTIE/DECIT-01/2013 - FPXII- BIOPLAT - Process number 01.13.0469.00) and Barretos Cancer Hospital. PhD scholarship from FINEP (Grant numbers 384088/2014-7 and 380434/2015-6) and Barretos Cancer Hospital to MNR

    Rac1 Targeting Suppresses Human Non-Small Cell Lung Adenocarcinoma Cancer Stem Cell Activity

    Get PDF
    The cancer stem cell (CSC) theory predicts that a small fraction of cancer cells possess unique self-renewal activity and mediate tumor initiation and propagation. However, the molecular mechanisms involved in CSC regulation remains unclear, impinging on effective targeting of CSCs in cancer therapy. Here we have investigated the hypothesis that Rac1, a Rho GTPase implicated in cancer cell proliferation and invasion, is critical for tumor initiation and metastasis of human non-small cell lung adenocarcinoma (NSCLA). Rac1 knockdown by shRNA suppressed the tumorigenic activities of human NSCLA cell lines and primary patient NSCLA specimens, including effects on invasion, proliferation, anchorage-independent growth, sphere formation and lung colonization. Isolated side population (SP) cells representing putative CSCs from human NSCLA cells contained elevated levels of Rac1-GTP, enhanced in vitro migration, invasion, increased in vivo tumor initiating and lung colonizing activities in xenografted mice. However, CSC activity was also detected within the non-SP population, suggesting the importance of therapeutic targeting of all cells within a tumor. Further, pharmacological or shRNA targeting of Rac1 inhibited the tumorigenic activities of both SP and non-SP NSCLA cells. These studies indicate that Rac1 represents a useful target in NSCLA, and its blockade may have therapeutic value in suppressing CSC proliferation and metastasis

    Evaluating the Effects of Cutoffs and Treatment of Long-range Electrostatics in Protein Folding Simulations

    Get PDF
    The use of molecular dynamics simulations to provide atomic-level descriptions of biological processes tends to be computationally demanding, and a number of approximations are thus commonly employed to improve computational efficiency. In the past, the effect of these approximations on macromolecular structure and stability has been evaluated mostly through quantitative studies of small-molecule systems or qualitative observations of short-timescale simulations of biological macromolecules. Here we present a quantitative evaluation of two commonly employed approximations, using a test system that has been the subject of a number of previous protein folding studies–the villin headpiece. In particular, we examined the effect of (i) the use of a cutoff-based force-shifting technique rather than an Ewald summation for the treatment of electrostatic interactions, and (ii) the length of the cutoff used to determine how many pairwise interactions are included in the calculation of both electrostatic and van der Waals forces. Our results show that the free energy of folding is relatively insensitive to the choice of cutoff beyond 9 Γ…, and to whether an Ewald method is used to account for long-range electrostatic interactions. In contrast, we find that the structural properties of the unfolded state depend more strongly on the two approximations examined here

    A High-Throughput Screen for Tuberculosis Progression

    Get PDF
    One-third of the world population is infected with Mycobacterium tuberculosis and multi-drug resistant strains are rapidly evolving. The noticeable absence of a whole organism high-throughput screening system for studying the progression of tuberculosis is fast becoming the bottleneck in tuberculosis research. We successfully developed such a system using the zebrafish Mycobacterium marinum infection model, which is a well-characterized model for tuberculosis progression with biomedical significance, mimicking hallmarks of human tuberculosis pathology. Importantly, we demonstrate the suitability of our system to directly study M. tuberculosis, showing for the first time that the human pathogen can propagate in this vertebrate model, resulting in similar early disease symptoms to those observed upon M. marinum infection. Our system is capable of screening for disease progression via robotic yolk injection of early embryos and visual flow screening of late-stage larvae. We also show that this system can reliably recapitulate the standard caudal vein injection method with a throughput level of 2,000 embryos per hour. We additionally demonstrate the possibility of studying signal transduction leading to disease progression using reverse genetics at high-throughput levels. Importantly, we use reference compounds to validate our system in the testing of molecules that prevent tuberculosis progression, making it highly suited for investigating novel anti-tuberculosis compounds in vivo

    A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial

    Get PDF
    Protein and other compounds can exert anabolic effects on skeletal muscle, particularly in conjunction with exercise. The objective of this study was to evaluate the efficacy of twice daily consumption of a protein-based, multi-ingredient nutritional supplement to increase strength and lean mass independent of, and in combination with, exercise in healthy older men. Forty-nine healthy older men (age: 73 Β± 1 years [mean Β± SEM]; BMI: 28.5 Β± 1.5 kg/m2) were randomly allocated to 20 weeks of twice daily consumption of either a nutritional supplement (SUPP; n = 25; 30 g whey protein, 2.5 g creatine, 500 IU vitamin D, 400 mg calcium, and 1500 mg n-3 PUFA with 700 mg as eicosapentanoic acid and 445 mg as docosahexanoic acid); or a control (n = 24; CON; 22 g of maltodextrin). The study had two phases. Phase 1 was 6 weeks of SUPP or CON alone. Phase 2 was a 12 week continuation of the SUPP/CON but in combination with exercise: SUPP + EX or CON + EX. Isotonic strength (one repetition maximum [1RM]) and lean body mass (LBM) were the primary outcomes. In Phase 1 only the SUPP group gained strength (Ξ£1RM, SUPP: +14 Β± 4 kg, CON: +3 Β± 2 kg, P < 0.001) and lean mass (LBM, +1.2 Β± 0.3 kg, CON: -0.1 Β± 0.2 kg, P < 0.001). Although both groups gained strength during Phase 2, upon completion of the study upper body strength was greater in the SUPP group compared to the CON group (Ξ£ upper body 1RM: 119 Β± 4 vs. 109 Β± 5 kg, P = 0.039). We conclude that twice daily consumption of a multi-ingredient nutritional supplement increased muscle strength and lean mass in older men. Increases in strength were enhanced further with exercise training

    Iron Accumulation with Age, Oxidative Stress and Functional Decline

    Get PDF
    Identification of biological mediators in sarcopenia is pertinent to the development of targeted interventions to alleviate this condition. Iron is recognized as a potent pro-oxidant and a catalyst for the formation of reactive oxygen species in biological systems. It is well accepted that iron accumulates with senescence in several organs, but little is known about iron accumulation in muscle and how it may affect muscle function. In addition, it is unclear if interventions which reduced age-related loss of muscle quality, such as calorie restriction, impact iron accumulation. We investigated non-heme iron concentration, oxidative stress to nucleic acids in gastrocnemius muscle and key indices of sarcopenia (muscle mass and grip strength) in male Fischer 344 X Brown Norway rats fed ad libitum (AL) or a calorie restricted diet (60% of ad libitum food intake starting at 4 months of age) at 8, 18, 29 and 37 months of age. Total non-heme iron levels in the gastrocnemius muscle of AL rats increased progressively with age. Between 29 and 37 months of age, the non-heme iron concentration increased by approximately 200% in AL-fed rats. Most importantly, the levels of oxidized RNA in gastrocnemius muscle of AL rats were significantly increased as well. The striking age-associated increase in non-heme iron and oxidized RNA levels and decrease in sarcopenia indices were all attenuated in the calorie restriction (CR) rats. These findings strongly suggest that the age-related iron accumulation in muscle contributes to increased oxidative damage and sarcopenia, and that CR effectively attenuates these negative effects

    A High-Throughput Platform for Lentiviral Overexpression Screening of the Human ORFeome

    Get PDF
    In response to the growing need for functional analysis of the human genome, we have developed a platform for high-throughput functional screening of genes overexpressed from lentiviral vectors. Protein-coding human open reading frames (ORFs) from the Mammalian Gene Collection were transferred into lentiviral expression vector using the highly efficient Gateway recombination cloning. Target ORFs were inserted into the vector downstream of a constitutive promoter and upstream of an IRES controlled GFP reporter, so that their transfection, transduction and expression could be monitored by fluorescence. The expression plasmids and viral packaging plasmids were combined and transfected into 293T cells to produce virus, which was then used to transduce the screening cell line. We have optimised the transfection and transduction procedures so that they can be performed using robotic liquid handling systems in arrayed 96-well microplate, one-gene-per-well format, without the need to concentrate the viral supernatant. Since lentiviruses can infect both dividing and non-dividing cells, this system can be used to overexpress human ORFs in a broad spectrum of experimental contexts. We tested the platform in a 1990 gene pilot screen for genes that can increase proliferation of the non-tumorigenic mammary epithelial cell line MCF-10A after removal of growth factors. Transduced cells were labelled with the nucleoside analogue 5-ethynyl-2β€²-deoxyuridine (EdU) to detect cells progressing through S phase. Hits were identified using high-content imaging and statistical analysis and confirmed with vectors using two different promoters (CMV and EF1Ξ±). The screen demonstrates the reliability, versatility and utility of our screening platform, and identifies novel cell cycle/proliferative activities for a number of genes
    • …
    corecore