447 research outputs found

    Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation

    No full text
    Migratory birds can use a magnetic compass for orientation during their migratory journeys covering thousands of kilometers. But how do they sense the reference direction provided by the Earth’s magnetic field? Behavioral evidence and theoretical considerations have suggested that radical-pair processes in differently oriented, light-sensitive molecules of the retina could enable migratory birds to perceive the magnetic field as visual patterns. The cryptochromes (CRYs) have been suggested as the most likely candidate class of molecules, but do CRYs exist in the retina of migratory birds? Here, we show that at least one CRY1 and one CRY2 exist in the retina of migratory garden warblers and that garden-warbler CRY1 (gwCRY1) is cytosolic. We also show that gwCRY1 is concentrated in specific cells, particularly in ganglion cells and in large displaced ganglion cells, which also showed high levels of neuronal activity at night, when our garden warblers performed magnetic orientation. In addition, there seem to be striking differences in CRY1 expression between migratory and nonmigratory songbirds at night. The difference in CRY1 expression between migrants and nonmigrants is particularly pronounced in the large displaced ganglion cells known to project exclusively to a brain area where magnetically sensitive neurons have been reported. Consequently, cytosolic gwCRY1 is well placed to possibly be the primary magnetic-sensory molecule required for light-mediated magnetoreception

    Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms

    Get PDF
    Harnessing chemosynthetic symbionts is a recurring evolutionary strategy. Eukaryotes from six phyla as well as one archaeon have acquired chemoautotrophic sulfur-oxidizing bacteria. In contrast to this broad host diversity, known bacterial partners apparently belong to two classes of bacteria—the Gamma- and Epsilonproteobacteria. Here, we characterize the intracellular endosymbionts of the mouthless catenulid flatworm genus Paracatenula as chemoautotrophic sulfur-oxidizing Alphaproteobacteria. The symbionts of Paracatenula galateia are provisionally classified as “Candidatus Riegeria galateiae” based on 16S ribosomal RNA sequencing confirmed by fluorescence in situ hybridization together with functional gene and sulfur metabolite evidence. 16S rRNA gene phylogenetic analysis shows that all 16 Paracatenula species examined harbor host species-specific intracellular Candidatus Riegeria bacteria that form a monophyletic group within the order Rhodospirillales. Comparing host and symbiont phylogenies reveals strict cocladogenesis and points to vertical transmission of the symbionts. Between 33% and 50% of the body volume of the various worm species is composed of bacterial symbionts, by far the highest proportion among all known endosymbiotic associations between bacteria and metazoans. This symbiosis, which likely originated more than 500 Mya during the early evolution of flatworms, is the oldest known animal–chemoautotrophic bacteria association. The distant phylogenetic position of the symbionts compared with other mutualistic or parasitic Alphaproteobacteria promises to illuminate the common genetic predispositions that have allowed several members of this class to successfully colonize eukaryote cells

    Programmable in situ amplification for multiplexed imaging of mRNA expression

    Get PDF
    In situ hybridization methods enable the mapping of mRNA expression within intact biological samples. With current approaches, it is challenging to simultaneously map multiple target mRNAs within whole-mount vertebrate embryos, representing a significant limitation in attempting to study interacting regulatory elements in systems most relevant to human development and disease. Here, we report a multiplexed fluorescent in situ hybridization method based on orthogonal amplification with hybridization chain reactions (HCR). With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability and sequence specificity of these amplification cascades enable multiple HCR amplifiers to operate orthogonally at the same time in the same sample. Robust performance is achieved when imaging five target mRNAs simultaneously in fixed whole-mount and sectioned zebrafish embryos. HCR amplifiers exhibit deep sample penetration, high signal-to-background ratios and sharp signal localization

    Craniospinal irradiation as part of re-irradiation for children with recurrent intracranial ependymoma

    No full text
    Background: The goal of this study was to evaluate outcomes in children with relapsed, molecularly characterized intracranial ependymoma treated with or without craniospinal irradiation (CSI) as part of a course of repeat radiation therapy (re-RT). Methods: This was a retrospective cohort study of 31 children. Patients with distant relapse received CSI as part of re-RT. For patients with locally recurrent ependymoma, those treated before 2012 were re-irradiated with focal re-RT. In 2012, institutional practice changed to offer CSI, followed by boost re-RT to the site of resected or gross disease. Results: Median follow-up was 5.5 years. Of 9 patients with distant relapse after initial RT, 2-year freedom from progression (FFP) and overall survival (OS) were 12.5% and 62.5%, respectively. There were 22 patients with local failure after initial RT. In these patients, use of CSI during re-RT was associated with improvement in 5-year FFP (83.3% with CSI vs 15.2% with focal re-RT only, P = 0.030). In the subgroup of patients with infratentorial primary disease, CSI during re-RT also improved 5-year FFP (100% with CSI, 10.0% with focal re-RT only, P = 0.036). Twenty-three patients had known molecular status; all had posterior fossa group A tumors (n = 17) or tumors with a RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A) fusion (n = 6). No patient developed radiation necrosis after fractionated re-RT, though almost all survivors required assistance throughout formal schooling. Five out of 10 long-term survivors have not developed neuroendocrine deficits. Conclusions: Re-irradiation with CSI is a safe and effective treatment for children with locally recurrent ependymoma and improves disease control compared with focal re-irradiation, with the benefit most apparent for those with infratentorial primary tumors

    Successful treatment of recalcitrant cutaneous sarcoidosis with fumaric acid esters

    Get PDF
    BACKGROUND: Sarcoidosis is a multisystem disease of unknown origin characterized by the formation of noncaseating granulomas, in particular in the lungs, lymph nodes, eyes, and skin. Systemic treatment for cutaneous sarcoidosis can be used for large disfiguring lesions, generalized involvement, or recalcitrant lesions that did not respond to topical therapy. CASE PRESENTATIONS: We report three patients with recalcitrant cutaneous sarcoidosis who were treated with oral fumaric acid esters (FAE). Three female patients presented with cutaneous sarcoidosis that have proved to be refractory to various therapies, including corticosteroids and chloroquine. We treated the patients with FAE in tablet form using two formulations differing in strength (Fumaderm(® )initial, Fumaderm(®)). Dosage of FAE was performed according to the standard therapy regimen for psoriasis patients. After treatment with FAE (4–12 months), a complete clearance of skin lesions was achieved in the three patients. The side effects observed in this trial correspond to the well-known spectrum of adverse effects of FAE (flush, minor gastrointestinal complaints, lymphopenia). CONCLUSIONS: On the basis of our findings FAE therapy seems to be a safe and effective regimen for patients with recalcitrant cutaneous sarcoidosis. Nevertheless further investigations are necessary to confirm our preliminary results

    Whole-Blood Flow-Cytometric Analysis of Antigen-Specific CD4 T-Cell Cytokine Profiles Distinguishes Active Tuberculosis from Non-Active States

    Get PDF
    T-cell based IFN-γ release assays do not permit distinction of active tuberculosis (TB) from successfully treated disease or latent M. tuberculosis infection. We postulated that IFN-γ and IL-2 cytokine profiles of antigen-specific T cells measured by flow-cytometry ex vivo might correlate with TB disease activity in vivo. Tuberculin (PPD), ESAT-6 and CFP-10 were used as stimuli to determine antigen-specific cytokine profiles in CD4 T cells from 24 patients with active TB and 28 patients with successfully treated TB using flow-cytometry. Moreover, 25 individuals with immunity consistent with latent M. tuberculosis infection and BCG-vaccination, respectively, were recruited. Although the frequency of cytokine secreting PPD reactive CD4 T cells was higher in patients with active TB compared to patients with treated TB (median 0.81% vs. 0.39% of CD4 T cells, p = 0.02), the overlap in frequencies precluded distinction between the groups on an individual basis. When assessing cytokine profiles, PPD specific CD4 T cells secreting both IFN-γ and IL-2 predominated in treated TB, latent infection and BCG-vaccination, whilst in active TB the cytokine profile was shifted towards cells secreting IFN-γ only (p<0.0001). Cytokine profiles of ESAT-6 or CFP-10 reactive CD4 T cells did not differ between the groups. Receiver operator characteristics (ROC) analysis revealed that frequencies of PPD specific IFN-γ/IL-2 dual-positive T cells below 56% were an accurate marker for active TB (specificity 100%, sensitivity 70%) enabling effective discrimination from non-active states. In conclusion, a frequency lower than 56% IFN-γ/IL-2 dual positive PPD-specific circulating CD4 T-cells is strongly indicative of active TB

    Anaplastic lymphoma kinase (ALK) inhibitor response in neuroblastoma is highly correlated with ALK mutation status, ALK mRNA and protein levels

    Get PDF
    Background In pediatric neuroblastoma (NBL), high anaplastic lymphoma kinase (ALK) levels appear to be correlated with an unfavorable prognosis, regardless of ALK mutation status. This suggests a therapeutic role for ALK inhibitors in NBL patients. We examined the correlation between levels of ALK, phosphorylated ALK (pALK) and downstream signaling proteins and response to ALK inhibition in a large panel of both ALK mutated and wild type (WT) NBL cell lines. Methods We measured protein levels by western blot and ALK inhibitor sensitivity (TAE684) by viability assays in 19 NBL cell lines of which 6 had a point mutation and 4 an amplification of the ALK gene. Results ALK 220 kDa (p=0.01) and ALK 140 kDa (p= 0.03) protein levels were higher in ALK mutant than WT cell lines. Response to ALK inhibition was significantly correlated with ALK protein levels (p<0.01). ALK mutant cell lines (n=4) were 14,9 fold (p<0,01) more sensitive to ALK inhibition than eight WT cell lines. Conclusion NBL cell lines often express ALK at high levels and are responsive to ALK inhibitors. Mutated cell lines express ALK at higher levels, which may define their superior response to ALK inhibition

    Bacterial Symbiosis Maintenance in the Asexually Reproducing and Regenerating Flatworm Paracatenula galateia

    Get PDF
    Bacteriocytes set the stage for some of the most intimate interactions between animal and bacterial cells. In all bacteriocyte possessing systems studied so far, de novo formation of bacteriocytes occurs only once in the host development, at the time of symbiosis establishment. Here, we present the free-living symbiotic flatworm Paracatenula galateia and its intracellular, sulfur-oxidizing bacteria as a system with previously undescribed strategies of bacteriocyte formation and bacterial symbiont transmission. Using thymidine analogue S-phase labeling and immunohistochemistry, we show that all somatic cells in adult worms – including bacteriocytes – originate exclusively from aposymbiotic stem cells (neoblasts). The continued bacteriocyte formation from aposymbiotic stem cells in adult animals represents a previously undescribed strategy of symbiosis maintenance and makes P. galateia a unique system to study bacteriocyte differentiation and development. We also provide morphological and immunohistochemical evidence that P. galateia reproduces by asexual fragmentation and regeneration (paratomy) and, thereby, vertically transmits numerous symbiont-containing bacteriocytes to its asexual progeny. Our data support the earlier reported hypothesis that the symbiont population is subjected to reduced bottleneck effects. This would justify both the codiversification between Paracatenula hosts and their Candidatus Riegeria symbionts, and the slow evolutionary rates observed for several symbiont genes

    Microanatomy of the trophosome region of Paracatenula cf. polyhymnia (Catenulida, Platyhelminthes) and its intracellular symbionts

    Get PDF
    Marine catenulid platyhelminths of the genus Paracatenula lack mouth, pharynx and gut. They live in a symbiosis with intracellular bacteria which are restricted to the body region posterior to the brain. The symbiont-housing cells (bacteriocytes) collectively form the trophosome tissue, which functionally replaces the digestive tract. It constitutes the largest part of the body and is the most important synapomorphy of this group. While some other features of the Paracatenula anatomy have already been analyzed, an in-depth analysis of the trophosome region was missing. Here, we identify and characterize the composition of the trophosome and its surrounding tissue by analyzing series of ultra-thin cross-sections of the species Paracatenula cf. polyhymnia. For the first time, a protonephridium is detected in a Paracatenula species, but it is morphologically reduced and most likely not functional. Cells containing needle-like inclusions in the reference species Paracatenula polyhymnia Sterrer and Rieger, 1974 were thought to be sperm, and the inclusions interpreted as the sperm nucleus. Our analysis of similar cells and their inclusions by EDX and Raman microspectroscopy documents an inorganic spicule consisting of a unique magnesium–phosphate compound. Furthermore, we identify the neoblast stem cells located underneath the epidermis. Except for the modifications due to the symbiotic lifestyle and the enigmatic spicule cells, the organization of Paracatenula cf. polyhymnia conforms to that of the Catenulida in all studied aspects. Therefore, this species represents an excellent model system for further studies of host adaptation to an obligate symbiotic lifestyle

    A Combinatorial Framework for Designing (Pseudoknotted) RNA Algorithms

    Get PDF
    We extend an hypergraph representation, introduced by Finkelstein and Roytberg, to unify dynamic programming algorithms in the context of RNA folding with pseudoknots. Classic applications of RNA dynamic programming energy minimization, partition function, base-pair probabilities...) are reformulated within this framework, giving rise to very simple algorithms. This reformulation allows one to conceptually detach the conformation space/energy model -- captured by the hypergraph model -- from the specific application, assuming unambiguity of the decomposition. To ensure the latter property, we propose a new combinatorial methodology based on generating functions. We extend the set of generic applications by proposing an exact algorithm for extracting generalized moments in weighted distribution, generalizing a prior contribution by Miklos and al. Finally, we illustrate our full-fledged programme on three exemplary conformation spaces (secondary structures, Akutsu's simple type pseudoknots and kissing hairpins). This readily gives sets of algorithms that are either novel or have complexity comparable to classic implementations for minimization and Boltzmann ensemble applications of dynamic programming
    corecore