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Abstract. We extend an hypergraph representation, introduced by Finkelstein and Roytberg, to unify
dynamic programming algorithms in the context of RNA folding with pseudoknots. Classic applica-
tions of RNA dynamic programming (Energy minimization, partition function, base-pair probabili-
ties. . . ) are reformulated within this framework, giving rise to very simple algorithms. This reformu-
lation allows one to conceptually detach the conformation space/energy model – captured by the
hypergraph model – from the specific application, assuming unambiguity of the decomposition. To
ensure the latter property, we propose a new combinatorial methodology based on generating func-
tions. We extend the set of generic applications by proposing an exact algorithm for extracting gener-
alized moments in weighted distribution, generalizing a prior contribution by Miklos and al. Finally,
we illustrate our full-fledged programme on three exemplary conformation spaces (secondary struc-
tures, Akutsu’s simple type pseudoknots and kissing hairpins). This readily gives sets of algorithms
that are either novel or have complexity comparable to classic implementations for minimization
and Boltzmann ensemble applications of dynamic programming.

Key words: RNA folding, Pseudoknots, Boltzmann Ensemble, Hypergraphs, Dynamic Programming

1 Introduction

Motivation. Over the past decades biology as a field has become increasingly aware of the importance
and diversity of roles played by ribonucleic acids (RNA). In addition to playing house-keeping parts, as
initially contemplated by the proteo-centric view of cellular processes, RNA is now accepted as a major
player of gene regulation mechanisms. For instance silencing activity (miRNAs, siRNAs) or multi-stable
cis-regulatory elements (riboswitches) are currently the subject of many research. Furthermore a recent
genome-wide experiment has revealed that a large portion of the human genome was subject to tran-
scription into RNA. While it is unlikely for all these transcripts to be functional as RNAs, novel classes
and roles are currently under investigation. Most of the functional roles played by RNA require the RNA
to adopt a specific structure to make an interaction possible, hide/exhibit an active site or allow for a
catalytic action (Ribozymes). Being able to understand and simulate how RNA folds is therefore a crucial
step toward understanding its function.
Ab initio secondary structure prediction. Initial algorithmic methods for the ab-initio prediction of RNA
folding considered a coarse-grain conformation space, the secondary structure, where each conforma-
tion is defined as a non-crossing subset of admissible base-pairs. This led Nussinov and Jacobson [39] to
design a Θ(n3) dynamic-programming (DP) algorithm for the base-pair maximization problem. Build-
ing on a nearest neighbor free-energy model proposed by Tinoco et al [51] and extended by the Turner
group, Zuker and Stiegler [56] created MFOLD, a Θ(n3) algorithm for minimizing the free-energy (MFE
folding), later shown to predict correctly ∼73% of base-pairs on a benchmark of RNAs of length < 700
nucleotides [34]. An independent implementation of the algorithm is proposed within the popular VIEN-
NARNA package maintained by Hofacker [22]. Probabilistic alternatives (SFOLD [11], CONTRAFOLD [14]
and CENTROIDFOLD [20]) have also recently been proposed with substantial improvement, relying on a
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dynamic programming scheme similar to that of MFOLD to traverse the conformation space in polyno-
mial time coupled with some postprocessing steps.
Ensemble approaches. Since the seminal work of McCaskill [35], the concept of Boltzmann equilibrium
has been used to embrace the diversity of folding accessible to an RNA sequence. He showed that the par-
tition function of an RNA – a weighted sum over the set of all compatible structures – could be computed
through a simple transposition of the DP scheme used for MFE folding. Coupled with a variant of the
inside/outside algorithm, this led to an exact computation of base-pairs probabilities in the Boltzmann-
weighted ensemble. This opened the door for more robust predictions, e.g. for RNAs whose MFE folding
is an outlier. This intuition was later validated by Mathews [33] who showed that the Boltzmann prob-
ability correlated well with the actual presence of base-pairs in experimentally-determined structures.
Ding et al [11] pushed this paradigm shift a step further by clustering sets of structures sampled within the
Boltzmann distribution and computing a consensus, improving on the positive-predictive-value (PPV) of
existing algorithms. This ensemble view naturally spread toward other applications of DP in Bioinformat-
ics (sequence alignement [38], simultaneous alignment and folding [21], 3D structural alignement [15]),
and is increasingly becoming a part of the algorithmic toolbox of bioinformaticians.
Pseudoknotted conformations. Although substantially successful in their task, secondary structure pre-
diction algorithms were intrinsically limited in by their inability to explore conformations featuring cross-
ing base-pairs. Such motifs, called pseudoknots, were initially excluded from the conformation space
based on the rationale that their participation to the free-energy would remain limited. Furthermore, the
adjunction of all possible pseudoknots was shown to turn MFE folding into an NP-complete problem
even in a simple nearest-neighbor model [1, 30]. However such conformations do naturally occur, and
can be essential to functional mechanisms such as -1-frameshift recoding events [4] or the formation of
tertiary motifs [40]. Therefore many exact DP approaches [45, 30, 13, 42, 6–8, 7, 23, 50, 44] have been pro-
posed over the years to extract the MFE structure within restricted – polynomially solvable – classes of
pseudoknots. However most of these approaches (with the notable exceptions of [13, 6, 44]) were based
on ambiguous DP schemes, leading them to consider certain structures multiple times. While such an
unambiguity would not be worrisome in the context of energy minimization, it prevents a direct transpo-
sition of these algorithms to ensemble applications (partition function, base-pair probabilities) by heav-
ily biasing – for no biologically valid reason – derived estimates.
Unambiguous decompositions. This lack of focus on unambiguity in the design of RNA (pseudoknotted)
DP algorithms can be explained by two main reasons. Firstly certain conformation spaces may not ad-
mit unambiguous schemes. Indeed it has been shown by Condon et al [9] that many PK conformational
spaces can be modeled as a formal language, while Flajolet [18] had shown, using a combinatorial argu-
ment, that certain simple context-free languages are inherently ambiguous, i.e. not generated by any un-
ambiguous context-free grammar. A second explanation is more historical: DP algorithms designers were
initially focused on optimization problems, and considered the DP equation, not the decomposition of
the search space, as the central object of their contributions. Indeed in the optimization perspective, it
is not mandatory for the conformation space to be completely (e.g. sparsification) or unambiguously
(e.g. multiply occurring best structure) generated. As decompositions grow more and more complex to
capture more complex energy models and topological limitations, these two key properties are becoming
increasingly hard to ascertain at the level of DP equations. Consequently there is a need for more rational
framework to facilitate the design of conformational spaces.
Combinatorial dynamic programming. Over the last century, enumerative combinatorics as a field has
been focusing on providing elegant decompositions for all sorts of objects. Our proposal is to adopt a sim-
ilar discipline in the design of DP decompositions, the only task worthy of human attention to our opin-
ion, and will eventually lead to an automated procedure for the actual production of codes/algorithms.
To that purpose we chose to build on and revisit an hypergraph analogy proposed by Finkelstein et al [16]
as a unifying framework for RNA folding and other applications of DP in Bioinformatics, which we gen-
eralize into combinatorial classes amenable to analysis using generating functions.
Related work. The two main frameworks offering abstracts view over Dynamic Programming are Lefeb-
vre’s multi-tape attributed grammars [26] and Giegerich’s Algebraic Dynamic Programming (ADP) [19],
respectively building on multitape-attributed grammars and context-free grammars. Although very ele-
gant and mature in their implementations, they suffer from limitations in expressivity that are intrinsic
to their underlying formalisms. For instance, ADP has to resort to an explicit manipulation of indices
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Fig. 1. Illustration of F-Graphs, F-Paths and Independence property. Straight lines indicate classic arcs, and bent
lines indicate hyperarcs.

in order to achieve competitive complexities for canonical pseudoknots [42], while Lefebvre’s multi-
tape grammars [27] require increased complexity to capture pseudoknots. Another formal description
of pseudoknotted search spaces is M. Möhl’s split-types [37], which focuses on how non-contiguous
portions are combined, providing a very compact description for pseudoknotted conformation spaces.
Compared to these abstract representations, the hypergraph formalism achieves a greater expressivity
by: i) Implementing an unordered product; ii) Allowing explicit manipulation of indices; iii) Allowing ad-
ditional information to be stored within nodes (Remember that context-free grammars allow for a finite
number of non-terminals). For instance, polynomial hypergraphs could be proposed for counting ho-
mogeneous alignments [25] whereas these objects cannot be generated by any context-free grammar [5]
and will not be expressed strictly within the alternative frameworks. This improved expressivity comes at
a price since the manual manipulation of indices is error-prone, as pointed accurately by Giegerich et al,
so one may want to think of our proposal as more of a byte code, possibly produced from a higher-level
source code (ADP, split-types. . . ).
Outline. In Section 2, we briefly remind some basic definitions related to forward directed hypergraphs.
In Section 3, we remind and propose dynamic programming algorithms for generic problems on F-
graphs. Then in Section 4, we illustrate our programme by proposing and proving unambiguous decom-
positions for three space of conformations: Classic secondary structures in the Turner energy model [32],
(weighted) base-pair maximisation version of Akutsu’s simple-type pseudoknots [1] and fully-recursive
kissing hairpins (Unambiguous restriction of Chen et al [8]). We also describe a simplified proof strategy
based on generating functions to prove the correctness of a given decomposition. Section 5 enriches the
scope of applications of our framework by proposing a general algorithm for extracting the moments of
additive features (free-energy, base-pairs, helices. . . ) in a weighted distribution (generalizing a previous
contribution by Miklos et al [36]). Finally Section 6 concludes with some remarks and possible extensions
and improvements.

2 Notations and key notions

Let us first remind that a directed hypergraph generalizes the notion of directed graph by allowing any
number of vertices as origin(tail) and destination (head) for each (hyper)-arcs. We will be focusing here
on Forward-Hypergraphs, or F-graphs, which restrict the tail of their arcs to a single vertex.

Formally, let V be a set of vertices, an F-arc e = (t(e) → h(e)) ∈V ×P (V ), connects a single tail vertex
t(e) ∈V to an ordered list of vertices h(e) ⊆V . An F-graph H = (V ,E ) is characterized by a set of vertices
V and a set of F-arcs E . Denote by cn the children of a node in a tree, then an F-path of H = (V ,E ) is a



tree T = (V ′ ⊆V ,E ′) such that, for any node n ∈V ′, (vn → cn)∈ E . For the sake of simplicity, we may omit
the implicit V ′ and identify an F-path to its set of edges E ′.

An F-derivation from a vertex s ∈ V can be recursively defined as either 〈s,∅〉 if (s → ∅) ∈ E , or
〈s,D1 . . . D|t|〉 if (s → t) ∈ E , t = {t1, t2, . . . , t|t |}, and each Di is an F-derivation starting from ti . An F-graph
is acyclic if and only if any vertex s ∈ V is present only once (as a root) in any derivations starting from
s. Moreover it is independent if and only if any vertex s ∈ V is reached at most once in any derivation,
regardless of its root.

A weighted F-graph is a triplet (V ,E ,π) such that (V ,E ) is an F-graph and π : E → R
+ is a weight

function that associates a weight to each F-arc. Finally, an oriented F-graph is a quadruplet (v0,V ,E ,π)
such that (V ,E ,π) is a weighted independent F-graph, and v0 ∈V is a distinguished initial vertex.

Remark 1: Notice that our definition of F-arcs and F-paths implicitly defines terminal vertices, since any
leaf l in a F-path has no child and our definition of F-paths therefore requires l →∅ to be an F-arc of H .

Remark 2: Under the independence property, the derivations starting from any node s ∈V are trees, and
are therefore in bijection with F-paths originating from the same vertex.

3 Generic problems and algorithms for F-paths in F-graphs

In the following, terminal cases will very seldom appear explicitly, but will rather be captured by the limit
cases of products

∏

u∈∅ f (u) = 1 and sums
∑

u∈∅ f (u) = 0, k ∈R.

Generating and counting F-paths in oriented F-graphs [55] Let H = (v0,V ,E ,π) be an oriented F-
graph, we address the problem of generating the set Pv0 of F-paths obtained starting from v0.

From the tree-like definition of F-paths and our remark on terminal vertices, we know that any F-
path starting from a vertex s can either be a leaf, provided that there exists an F-arc s →∅, or an internal
node. In the latter case, any F-paths is composed of auxiliary paths, generated from the vertices in the
head of some F-edge having s as tail. Remark that our definition of F-paths requires each vertex from V

to appear at most once in any F-path, a fact that is ensured here by the acyclicity of H . Therefore we can
recursively define the set of P s of F-paths starting from a root node s as

P s =
{

{(s,∅)} If (s,∅) ∈E

∅ Otherwise

}

∪
⋃

(s→t)∈E

(

{s}×
∏

u∈t

Pu

)

, ∀s ∈V . (1)

Since E is a set, the candidate heads for a given tail s are distinct and the unions in the above equations
are disjoint. Furthermore, the products are Cartesian, so we can directly transpose the recurrence above
over the cardinalities ns = |P s | and obtain

ns =
∑

(s→t)∈E

∏

u∈t

nu , ∀s ∈V . (2)

This immediately yields a Θ(|V | + |E | +
∑

e∈E |h(e)|)/Θ(|V |) time/memory dynamic programming algo-
rithm for counting F-paths.

Minimal score F-path Let us consider an additive scoring scheme based on weights, and accordingly
define the score of an F-path p to be α

(

p
)

=
∑

e∈E π(e). We address here the problem of finding an F-path
p0 having minimal score or more formally some p0 ∈ Pv0 such that ∀p ∈ Pv0 , p 6= p0 ⇒ α

(

p
)

≥ α
(

p0
)

.
From the independence of siblings and the strict additivity of the score, we know that the path minimiza-
tion problem has optimal substructure, i. e. any optimal solution is composed of optimal solutions for its
subproblems. Consequently, the minimal score ms of a path starting from a root node s ∈V is given by

ms = min
e=(s→t)∈E

(

π(e)+
∑

u∈t

mu

)

, ∀s ∈V . (3)



A classic backtrack procedure can then be used to reconstruct the F-path instance pmin
s starting from

s ∈V and having minimal score. Alternatively, the previous recurrence can be modified as follows

pmin
s = argmin

p′=⋃

s′∈t pmin
s′

s.t. (s→t)∈E

α
(

{(s → t)}∪p ′) , ∀s ∈V , (4)

giving a Θ(|V |+ |E |+
∑

e∈E |h(e)|)/Θ(|V |) time/memory DP algorithm for the minimal weighted F-path.

Weighted count and weighted random generation [10] Let us extend multiplicatively on paths our
weight function, defining the weight of any F-path p to be π(p) =

∏

e∈p π(e). Then a small modification
of Equation 2 gives a recurrence for computing the cumulated weight, or weighted count ws of F-paths
starting from a given vertex s:

ws =
∑

p′∈P s

π(p ′) =
∑

e=(s→h(e))∈E

π(e) ·
∏

s ′∈h(e)

ws ′ , ∀s ∈V (5)

Provided that the weights are positive, this defines a weighted probability distribution over F-paths,
which assigns to each path p ∈Pv0 a probability

P(p |π) =
π(p)

∑

p′∈Pv0
π(p ′)

≡
π(p)

wv0

. (6)

From the precomputed values ws , one can perform a weighted random generation to draw at ran-
dom a set of k F-paths from v0 according to a weighted distribution. Starting from any vertex s, the algo-
rithm chooses at each step an F-arc e = (s → h(e)) with probability

ps,e =
π(e) ·

∏

s ′∈h(e) ws ′

ws
,

and proceeds to the recursive generation of auxiliary paths from each vertex in h(e). A simple induction
argument shows that any F-path is then generated with respect to the probability distribution of Equa-
tion 6. The weighted count recurrence is computed by a Θ(|V | + |E | +

∑

e∈E |h(e)|)/Θ(|V |) time/memory
algorithm, and each path p is generated in Θ(|p|+

∑

e∈p |h(e)|)/Θ(|p|) time/memory.

Remark 3: This worst-case complexity can be improved using additional information on the structure of
the F-graph. For instance, when both the height and maximal degree of a vertex are bounded by some
constant n, Boustrophedon search [17, 41] can be used to decrease the worst-case complexity of each
generation from Θ(n2) to O(n log n).

Arc traversal probabilities Using the same probability distribution, a natural problem is to compute
the probability pe of an F-arc e ∈ E being in a random F-path. To that purpose one can use the classic
inside/outside algorithm, which can be rephrased as an F-graphs traversal.

Let us first point out that the probability pe is related to the cumulated weight of all F-paths featuring
an edge e = (t(e) → h(e)) through

pe =

∑

p∈Pv0
s.t. e∈p

π(p)

∑

p′∈Pv0
π(p ′)

≡

∑

p∈Pv0
s.t. e∈p

π(p)

wv0

. (7)

From the independence of H , we know that each vertex appears at most once in any given F-path, and
consequently any F-path traversing e can therefore be unambiguously decomposed into: i) An e-outside

tree, i.e. a derivation from v0 whose leaves are either terminal or t(e), and which features exactly one
occurrence of t(e); ii) A support edge e = (t(e) → h(e)); iii) An e-inside tree, i.e. a set of F-paths issued
from h(e).

The unambiguity of the decomposition, along with the independence of i) and iii), translates into
∑

p∈Pv0
s.t. e∈p

π(p)= bt (e) ·π(e) ·
∏

s ′∈h(e)

ws ′ (8)



where bs is the cumulated weight of all outside trees leaving s ∈V underived. Finally it can be shown that
the cumulated weight bs over all e-outside trees obey the following simple recurrence

bs = 1s=q0 +
∑

e′∈E
s. t. s∈h(e′)

π(e ′) ·bt (e′) ·
∏

s ′∈h(e′)
s ′ 6=s

ws ′ , ∀s ∈V (9)

which can computed in O(|V |+ |E |+
∑

e∈E |h(e)|2)/Θ(|V |) time/memory. The probability of traversing pe

in a random F-path can finally be computed through the formula

pe =
bt (e) ·

∏

s ′∈h(e) ws ′

wv0

, ∀e ∈E . (10)

4 F-graphs reformulation of (Pseudoknotted) RNA conformation spaces

From the previous section, we know that very simple algorithms exist for weighted optimization and enu-
meration problems over the F-paths of an F-graph. Let us now consider MFE folding-related problems
over an arbitrary conformation space D for a sequence ω, under an energy model E : D → R and as-
sume that there exists: C1. An F-graph H whose F-paths P are in bijection with the conformation space
D; C2. A weight function π such that the (additive) score of any F-path coincides with the energy of its
corresponding conformation.

Under such conditions, it can be remarked that the minimal score algorithm (Equation 3) exactly
computes the Minimal Free-Energy MF E = mins∈D Es . Furthermore, the Weighted Count (Equation 5),
applied to a weight function π′(e) = e−π(e)/RT , computes the Partition Function Z =

∑

s∈D e−Es /RT . Other
quantities of interest for RNA folding can also be derived, as summarized in Tables 1 and 2.

4.1 Foreword: Shortening correctness proofs through generating functions

Our main challenge is to find an hypergraph/weight such that the energy function can be expressed in
an additive fashion. Focusing first on Condition C1, one remarks that finding a function ψ : P → D which
maps F-Paths to elements of the conformation space is not challenging, as it essentially amounts to fig-
uring out which derivation creates which base-pairs. Condition C1 is then traditionally broken into two
parts: an unambiguity condition which requires distinct elements in P to give rise to distinct elements
within D, i.e. ψ should be injective; a completeness condition which requires each element in S to have
at least one pre-image, i.e. ψ should be surjective.

Since these notions are intimately related to the semantics associated with the F-paths, they can-
not be tackled in an automated way at the hypergraph level4. Therefore correctness proofs will usually
require user-assigned semantics coupled with custom arguments, a task that may become challenging
and/or tedious for complex decompositions. In order to simplify the validation and therefore the design
of new conformation spaces, we propose a simplified proof technique based on generating functions.

Indeed, instead of specializing the hypergraph for each and every input sequence, one can delegate
to the weight function the responsibility of weeding out conformations, e.g. by assigning them +∞ en-
ergetic contributions within MFE folding. Therefore each class of conformations can be seen as a family
of conformation space {Dn }n≥0 (secondary structures, simple type pseudoknots. . . ), to which one asso-
ciates a family of hypergraphs {Hn}n≥0, a decomposition, both indexed by the length n of the sequence.

Let us remind that generating functions are formal power series that can be used to store various in-
formation. For instance the counting generating function for the conformation space family D can be
defined as SD (z) =

∑

n≥0 |Dn | · zn where z is a formal complex variable devoid of intuitive meaning. Fur-
thermore let Pn be the set of F-Paths associated with Hn , then the counting generating function of the
decomposition can be defined as SH (z) =

∑

n≥0 |Pn | ·zn . Then the formal identity SD (z)= SH (z) implies
that |Dn | = |Pn |,∀n ≥ 0. It follows from basic set theory that unambiguity/injectivity (resp. complete-
ness/surjectivity) of ψ, in addition to the identity of generating functions, is in itself sufficient to prove
the bijectivity of ψ. Since reference generating functions are now available for many conformation space
families [47], this practically halves the burden of designing a proof.

4 Algebraic Dynamic Programming partially addresses this issue, and the interested reader is referred to an early
contribution by Reeder et al [43].
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Fig. 2. Simplification of the Unafold [32] decomposition of the secondary structures space. Framed states indicate
origins of (hyper)arcs.

4.2 RNA secondary structures

Let us first illustrate our approach on RNA secondary structures, for which Unafold [32] – the successor
of MFold [56] – offers an unambiguous scheme. Compared to the original decomposition presented in
Markham’s thesis [31], the one described in Figure 2 is simplified to ignore dangles.

Proving unambiguity.

– Let us remark that both Q5 and Q1 either leave their last base j unpaired (Left), or pairs it to i (Right).
Furthermore these two cases are mutually exclusive. Finally Q1 generates exactly one helix.

– Q always makes at least one call to Q1 and therefore creates at least one helix. Therefore, it either
creates exactly one helix (Left case) or more (Right case), and these two cases are mutually exclusive.

– Q ′ distinguishes different types of loops. Let m5, m3 be the numbers of unpaired bases on the 5′

strand, 3′ strand, and h be the number of helices starting from case Q ′, one can label each of the cases
and observe that they are mutually non-overlapping. Namely from left to right, we get the following
(m5,m3,h) triplets: Interior loop (> 0,> 0,1), stacking pair (0,0,1), multiloop (≥ 0,≥ 0,> 1), bulges 5′

(> 0,0,1) and 3′ (0,> 0,1), and hairpin loop (> 0,> 0,0).

Deriving completeness. From previous work by Waterman [54], we know that the generating function
of secondary structures with at least one unpaired base between paired bases (θ = 1) is

S(z)=
1− z + z2 −

p
1−2z − z2 −2z3 + z4

2z2
. (11)

Following the general principle of the so-called DSV methodology (See Lorenz et al [29] for a pre-
sentation in a similar context), the Unafold decomposition can be translated into a system of algebraic
equations. Namely, one simply replaces any occurrence of k unpaired base with zk , each basepair with
z2, and any vertex with its associated generating function. Let Q5(z), Q(z), Q ′(z) and Q1(z) be the gener-
ating functions counting the F-paths generated from Q5, Q , Q ′ and Q1 respectively:

Q5(z) =Q5(z) · z +Q5(z) ·Q ′(z) Q(z)= Seq(z) ·Q1(z)+Q(z) ·Q1(z) Q1(z)= z ·Q1(z)+Q ′(z)

Q ′(z) =z2 ·Seq+(z) ·Q ′(z) ·Seq+(z)+ z2 ·Q ′(z)+ z2 ·Q(z) ·Q ′(z)

+ z2 ·Q ′(z) ·Seq+(z)+ z2 ·Seq+(z) ·Q1(z)+Seq+(z)

Seq+(z) =z ·Seq(z) Seq(z)= z ·Seq(z)+1.

Solving the system yields Q5(z) = S(z) which, in conjunction with the unambiguity of the decomposition,
proves its completeness.



Application Algorithm Weight fun. Time Memory Ref.

A – Energy minimization Minimal weight πT O(n3) O(n2) [56]

B – Partition function Weighted count e
−πT

RT O(n3) O(n2) [35]

C – Base-pairing probabilities Arc-traversal prob. e
−πT

RT O(n3) O(n2) [35]

D – Statistical sampling (k-samples) Weighted random gen. e
−πT

RT O(n3 +k ·n log n) O(n2) [12, 41]

E – Moments of energy (Mean, Var.) Moments extraction e
−πT

RT O(n3) O(n2) [36]

F – m-th moment of additive features Moments extraction e
−πT

RT O(m3 ·n3) O(m ·n2) –

G – Correlations of additive features Moments extraction e
−πT

RT O(n3) O(n2) –
Table 1. Reformulations of secondary structure applications as F-graphs problems and associated complexities.

Applicability of generic algorithms. Let us show that H fulfills the prerequisites of our algorithms. First
it is easily verified that H is an F-graph. Associating a region [i , j ] (resp. [1, j ]) with each vertex q1

i , j
, qi , j

and q ′
i , j

(resp. q5
j
), one easily verifies that for any F-arc e ∈ E the width of any region in the head h(e) is

strictly smaller than that of the tail t(e), and the acyclicity of H directly follows. Furthermore, any two
vertices in the head h(e) have non-overlapping associated regions. Consequently H is independent, and
a direct application of our generic algorithms gives a set of algorithms summarized in Table 1. This gives
a family of efficient O(n3) algorithms for assessing RNA secondary structure properties at the Boltzmann
equilibrium.

Alt. 1 Alt. 2
i j

i j

i+k j-k

i+k

l    j-k

j-k

l>i+k

i j

kkl

i

Fig. 3. Alternative exhaustive strategies for interior loops.

Remark 4: In interior loops, the set of F-arcs generated for the Q ′ case has apparent cardinality in O(n4).
This can be brought back to O(n3) by enforcing constraints on the energy function. Traditionally, the
accepted practice is to bound the interior loop size ( j ′− j )+ (i ′− i ) from above by a predefined constant
K ≈ 30. Exhaustive O(n3) decompositions can also be proposed (Figure 3) by decomposing the internal
loop into additively-contributing regions. A first option may generate independently the left and right
unpaired regions (Figure 3, Left), while an alternative may decompose internal loops into a symmetric
loop followed by a fully asymmetric one (Figure 3, Right).

4.3 Simple-type pseudoknots

In his seminal work, Akutsu [1] focused on a subset of pseudoknots motifs, the simple-type pseudoknots,
and proposed algorithms of complexity in O(n4) for simple non-recursive pseudoknots in a basepair-
maximisation energy model, and in O(n5) for recursive pseudoknots and loop-based energy models.
However, the decomposition proposed in [1] is ambiguous, e.g. there exists different ways to create un-
paired regions. Therefore we propose in Figure 4 an unambiguous decomposition for the same confor-
mation space.
Previous results. In a previous work [47, 48], one of the authors showed that simple-type pseudoknots
can be encoded by a simple formal language, in bijection with a context-free language. Here we focus on
partly recursive simple pseudoknots presented in Figure 4. They can be encoded by a well-parenthesized
word p over two systems of parentheses {( f , f̄ ), (g , ḡ )}, respectively indicating the leftmost and rightmost
basepairs in Figure 4, and an unpaired character c such that

p = (c∗ f )n p ′ (g c∗)m1 ( f̄ c∗)n1 (g c∗)m2 ( f̄ c∗)n2 · · · (g c∗)mk ( f̄ c∗)nk−1 f̄ p ′′ ḡ (c∗ ḡ )m−1 (12)
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Fig. 4. An unambiguous decomposition for simple non-recursive pseudoknots that captures the Akutsu/Uemura
class of pseudoknots. This decomposition yields O(n4)/Θ(n4) time/memory algorithms for partially recursive pseu-
doknots and can be extended to include recursive pseudoknots and/or Turner energy contributions in O(n5)/Θ(n4).

where k is some integral value,
∑k

i=1 ni = n ≥ 1,
∑k

i=1 mi = m ≥ 1, and p ′, p ′′ are any two recursively-
generated conformations.
Completeness. Let us show that the decomposition in Figure 4 is complete, i.e. that any partially recur-
sive pseudoknot can be generated by the decomposition.

Let us initially focus on base-pairs and ignore unpaired bases. The smallest word within the language
of Equation 12 is f p ′g f̄ p ′′ ḡ which can be generated by applying the initial case (Q → AL → AM → A 

p ′ . . . g . . . ḡ ) followed directly by the terminal case (A → AT  f p ′ g f̄ p ′′ ḡ ). Moreover through a sequence
A → AR → AM → A, one adds an outermost edge around the right part g . . . ḡ . So through m iterations
of the sequence the decomposition generates any structure g m1 . . . ḡ m1 . Similarly through a sequence
A → AL → AM → A one adds an outermost edge around the left part f . . . f̄ , and after n1 iterations any
structure f n1 . . . f̄ n1 is generated. Since these two sequences can be combined and alternated (starting
with the initial case and finishing with the terminal case), then the decomposition generates any word

p = f n p ′ g m1 f̄ n1 g m2 f̄ n2 · · · g mk f̄ nk p ′′ ḡ m ḡ . (13)

For the recursive call p ′, it is easily verified that Q∗ generates any (PK) structure. For p ′′ it is worth men-
tioning that, at a base-pairing level, A → AT (right base paired) and A →; cover all possible situations.

Arbitrary numbers of unpaired bases c can also be inserted right before the opening f of a leftward
base pair (resp. after closure f̄ of a leftward base pair, after the opening g of a right base pair and before
the closure ḡ of a right base pair) by repeatedly applying the AL → AL (resp. AM → AM , AL → AL and
AM → AM ) rule after adding a left (resp. right) base pair. Consequently any structure described by a word
in Equation 12 can be generated by the decomposition.
Unambiguity. Let us now address the unambiguity of the decomposition, using our approach based on
generating functions. Equation 12 immediately gives a system of equations relating AU (z), the generating
function of simple partially recursive pseudoknots, to S(z) the gen. fun. of all structures:

AU (z)=
∑

k≥1

( z

1− z

)n
S(z)

( z

1− z

)m1 ( z

1− z

)n1
· · ·

( z

1− z

)nk−1
z S(z) z

( z

1− z

)m−1
=

z4 S(z)2 (1− z)

1−2 z − z2
.

Now consider the dynamic programming decomposition illustrated by Figure 4. Associating generating
functions to each type of vertices and translating assigned bases into monomials, we obtain the following
system of equations:

Q ′(z)= z2 S(z) AR (z) AL(z) = z AL(z)+ AM (z) AR (z) = z AR (z)+ AM (z)

AM (z)= z AM (z)+ A(z) A(z)= z2 AR (z)+ z2 AL(z)+ z2 S(z) AT (z) = S(z)(1− z)−1.
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Fig. 5. Unambiguous decomposition of fully recursive kissing hairpins.

The last expression for AT (z) follows directly from the observation that any structure in Q can be written
as a sequence of structures from Q ′ interleaved with sequences of unpaired bases. Given that AT cannot
feature unpaired bases on its right end, one of the sequence of unpaired base must be removed. Further-
more AT does not generate the empty structure, so we have S(z)= (AT (z)+1)/(1− z). Solving the system

gives Q ′(z) = S2(z) z4 (1−z)
1−2 z+z2 = AU (z) and the unambiguity/correctness of the decomposition directly follow.

4.4 Fully-recursive kissing hairpins

Kissing hairpins (KH) are pseudoknotted structure composed of two helices whose terminal loops are
linked by a third helix. These pseudoknots are frequently observed, and are exhaustively predicted by
Chen et al [8] in time complexity in O(n5), and in O(n3)/O(n4) under restrictions by Theis et al [50]. Fig-
ure 5 presents an unambiguous decomposition which generates the space of recursive kissing hairpins.
Previous results. Again, an encoding of kissing hairpins can be found in earlier work by one of the au-
thors [47], showing that any KH pseudoknot can be represented by a word p over three systems of paren-
theses {( f , f̄ ), (g , ḡ ), (h, h̄)} (respectively denoting leftmost, central and rightmost helices) such that:

p = ( f S)n (g S)m ( f̄ S)n (hS)k (ḡ S)m (h̄S)k−1 h̄. (14)

Completeness. First let us remark that the minimal conformation generated by the decomposition is
KL → KR → K ′

R → KM  f Sg S f̄ ShSḡ Sh̄. Remark that one can iterate arbitrarily over the states KL →
K ′

L
→ KL , K ′

R
→ KR → K ′

R
and K ′

M
→ KM → KM . Consequently one may insert patterns (KL → K ′

L
→

KL)n−1
 (S f )n−1 · · · ( f̄ S)n−1, (K ′

R
→ KR → K ′

R
)k−1
 (h S)k−1 · · · (h̄ S)k−1 and (KM → K ′

M
→ KM )m

 

(g S)m−1 · · · (S ḡ )m−1 in the minimal word above, and produce any conformation denoted by

f (S f )n−1S(g S)m−1yS( f̄ S)n−1 f̄ ShS(hS)k−1ḡ (Sḡ )m−1S(h̄S)k−1h̄

where one recognizes the language of Equation 14 upon simple expansion.
Unambiguity. Equation 14 allows to derive the generating function K H(z) of kissing-hairpin as a func-
tion of S(z) the gen. fun. of all structures:

K H(z) =
∑

n,m,k≥1

(zS(z))n(zS(z))m(zS(z))n(zS(z))k(zS(z))m(zS(z))k−1z =
z6S(z)5

(1− z2S(z)2)3
· (15)

Now consider the dynamic programming decomposition illustrated by Figure 5, and translate it into a
system of functional equation:

K (z)= z4KL(z)S(z)

KL(z) = S(z)K ′
L(z)+KR (z) K ′

L(z)= z2KL(z)S(z) KM (z) = K ′
M (z)S(z)+S(z)2

K ′
M (z) = z2KM (z)S(z) KR (z)= K ′

R (z)S(z) K ′
R (z) = z2KR (z)S(z)+ z2KM (z)S(z)



Application Algorithm Weight fun. Time Memory Ref.
Simple type pseudoknots (Akutsu&Uemura)

A – Energy minimization Minimal weight πbp O(n4) O(n4) [1]

B – Partition function Weighted count e
−πbp

RT O(n4) O(n4) [6, 7] in Θ(n6)

C – Base-pairing probabilities Arc-traversal prob. e
−πbp

RT O(n4) O(n4) –

D – Statistical sampling (k-samples) Weighted rand. gen. e
−πbp

RT O(n4 +k ·n log n) O(n4) –

E – Moments of energy (Mean, Var.) Moments extraction e
−πbp

RT O(n4) O(n4) –

F – m-th moment of additive features Moments extraction e
−πbp

RT O(m3 ·n4) O(m ·n4) –
Fully recursive Kissing Hairpins

A – Energy minimization Minimal weight πT O(n5) O(n4) [8]

B – Partition function Weighted count e
−πT

RT O(n5) O(n4) –

C – Base-pairing probabilities Arc-traversal prob. e
−πT

RT O(n5) O(n4) –

D – Statistical sampling (k-samples) Weighted rand. gen. e
−πT

RT O(n5 +k ·n log n) O(n4) –

E – Moments of energy (Mean, Var.) Moments extraction e
−πT

RT O(n5) O(n4) –

F – m-th moment of additive features Moments extraction e
−πT

RT O(m3 ·n5) O(m ·n4) –
Table 2. Summary of ensemble based algorithms on simple pseudoknots and kissing hairpins. πbp stands for the
simple Nussinov-Jacobson energy model, and πT for a Turner-like model based on loops contributions.

Solving the system gives K (z) = z6S(z)5

(1−z2S(z)2)3 = K H(z) and the unambiguity of the decomposition imme-
diately follows. Again hypergraphs algorithms can be used, and specialize into the complexities summa-
rized in Table 2.

5 Extending the framework: Extraction of moments and exact correlations

A last application addresses the extraction of statistical measures for additive features. Let us first define
a feature as a function α : E →R

+ extended additively over F-paths such that α(p) =
∑

e∈p α(e). One may
then want to characterize the distribution of a random variable X = α(p), for p ∈ P a random F-path
drawn according to the weighted distribution. As it is not necessarily feasible to determine the exact
distribution of X , one can examine statistical measures such as its

Mean µX = E[X ] and Variance VarX = E[X 2]−µ2
X ,

e.g. from which the distribution is fully determined in the case of Gaussian distributions. Even when the
distribution is not normal, it can still be characterized by a list of measures called moments of X , the
m-th moment being defined as E[X m ]=

∑

p∈P α(p)m ·π(p)/ws .
Moreover in the presence of multiple features (X1 :=α1(p), . . . , Xk :=αk (p)), similar measures can be

used to estimate their level of dependency. One such measure is the Pearson product-moment correla-

tion coefficient ρX1,X2 defined for two random variables as

ρX1,X2 =
CovX1,X2

√

VarX1 ·VarX2

=
E[X1 ·X2]−E[X1] ·E[X2]

√

VarX1 ·VarX2

The correlation above involves the expectation of a product of two random variables which is an
instance of a generalized moment, defined for the set of F-paths starting from s ∈V as

E[X
m1
1 · · ·X

mk

k
| s] =

∑

p∈P s

π(p)

ws

k
∏

i=1
αi (p)mi . (16)

Extracting such moments can be quite useful, allowing one to get access to average properties of struc-
tures (#Hairpins, #Occurrences of pseudoknots. . . ) and their correlations within a weighted ensemble.
For instance, Miklos et al [36] proposed an O(m2 · n3) algorithm for computing the m-th moment of



the Energy distribution for secondary structure in order to compare the distribution of free-energy in
non-coding RNAs and random sequences. We are going to show how these generalized moments can be
extracted directly through a generalization of the weighted count algorithm.

Theorem 1. Let α := (α1, · · · ,αk ) be a vector of additive features and m := (m1, · · · ,mk ) be a k-tuple of

natural integers. Then the pseudo-moment cm
s := E[X

m1
1 · · ·X

mk

k
| s] ·ws of α in a weighted distribution can

be recursively computed through

cm
s =

∑

e=(s→t)
π(e) ·

∑

m′,
(

m′′
1 ,··· ,m′′

|t |

)

s. t. m′+
∑

j m′′
j
=m

k
∏

i=1

(

mi

m′
i
,m′′

1,i , · · · ,m′′
|t |,i

)

·αi (e)m′
i ·

|t |
∏

i=1
c

m′′
i

ti
(17)

in O

(

(|E |+ |V |) ·k · t+ ·
∏k

i=1 mt++1
i

)

time complexity andΘ
(

|V | ·
∏k

i=1 mi

)

memory where t+= max(s→t )∈E (|t |)
is the maximal out-degree of an arc.

Adding this new generic algorithms automatically creates new applications for each an every confor-
mation space as summarized in Figure 2. This simultaneous extension – for all conformational spaces
– of possible ensemble applications constitues in our opinion one of the main benefit of detaching the
decomposition from its exploration.

6 Conclusion and Perspectives

In this paper, we established the foundation of a combinatorial approach to the design of algorithms
for complex conformation spaces. We built on an hypergraph model introduced in the context of RNA
secondary structure by Finkelstein and Roytberg [16], which we extended in several direction. First we
formulated classic and novel generic algorithms on Forward-Hypergraphs for weighted ensembles, al-
lowing one to derive base-pairing probabilities, perform statistical sampling and extract moments of the
distribution of additive features. Then we showed how combinatorial arguments based on generating
functions could be used to simplify the proof of correctness for designed decompositions. We illustrated
the full programme on classic secondary structures, simple type pseudoknots and fully-recursive kiss-
ing hairpin pseudoknots for which we provided decompositions that were proven to be unambiguous
and complete with respect to previous work. The hypergraph formulation of the decomposition, cou-
pled with the generic algorithms, readily gave a family of novel algorithms for complex – yet relevant –
conformation spaces.

Let us mention some perspectives to our contribution. Firstly the principles and algorithms described
here could easily be implemented as a general compiler tools for F-Graphs algorithms. Such a compiler
could be coupled with helper tools expanding hypergraphs from succinct descriptions, such as context-
free grammars (related to ADP [19]), or M. Möhl’s split types [37]. More complex search space could also
be modeled, such as those relying on a more detailed representation of RNA structure (e.g. MCFold’s
NCMs [40]), those capturing RNA-RNA interactions [2, 24], those offering simultaneous alignment and
folding (Sankoff’s algorithm [46]) or performing mutations on the sequence [53]. Finally our hypergraph
framework is not necessarily limited to polynomial algorithms, and algorithmic developments could be
proposed to address some of the current algorithmic issues in RNA (inverse folding [3], kinetics [49])
for which no exact polynomial algorithms are currently known (or suspected). More generally it is our
hope that, by simplifying and modularizing the process of developing new – algorithmically tractable
– conformation spaces, our contribution will help design better, more topologically-realistic[52, 28, 44],
energy and conformational spaces to better understand and predict the structure(s) of RNA.
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