13 research outputs found

    Exploring aerosol-cloud interaction in Southeast Pacific marine stratocumulus during VOCALS regional experiment

    Get PDF
    The marine stratocumulus clouds are highly sensitive to aerosol perturbations. In this study, we have explored the cloud susceptibility to aerosol using satellite observation and multi-model simulations over the Southeast Pacific Ocean (SEP). The climatology of satellite observation indicates that SEP is a relatively clean area with low aerosol optical depth (AOD). The SEP is a region of marine stratocumulus deck with cloud fraction (CF) reaching as high as 90% in many regions, with relatively low (140 cm−3) cloud droplet number concentration (CDNC) over the marine environment, and it increases as it moves towards the coast. The joint histogram analysis shows that the AOD-CDNC relation shows positive sensitivity and a non-linear CDNC-LWP (liquid water path) relationship; however, a negative sensitivity is dominant. The multimodel analysis shows that most models have a strong positive AOD-CDNC sensitivity, suggesting that the cloud albedo effect leads to net cooling. The general circulation models (GCM) reveal a negative radiative forcing (-0.28 to -1.36Wm−2) at the top of the atmosphere (TOA) when using the flux method. It supports the positive AODCDNC sensitivity and the resulting negative radiative forcing in GCMs. However, the CDNC-LWP shows a diverse relation in the models. In the GCMs, the effect of cloud microphysics is not considered while estimating the net radiative forcing. To include the effect of cloud microphysics in the radiative forcing estimates, we have proposed a statistical approach to calculate the net radiative forcing. The results show that the net radiative forcing is sensitive to the LWP change due to the aerosol perturbation.Die marinen Stratocumulus-Wolken reagieren sehr empfindlich auf Aerosol-Störungen. In dieser Studie haben wir die Anfälligkeit der Wolken für Aerosol anhand von Satellitenbeobachtungen und Multi-Modellsimulationen über dem Südostpazifik (SEP) untersucht. Die Klimatologie der Satellitenbeobachtung zeigt, dass der SEP ein relativ sauberes Gebiet mit geringer Aerosol optischer Dicke (AOD) ist. Der SEP ist eine Region mit mariner Stratocumulus-Decke mit einer Wolkbedeckungsgrad (CF), der in vielen Regionen bis zu 90% erreicht, mit einer relativ niedrigen (140 cm−3) Wolkentröpfchenanzahlkonzentration (CDNC) über der marinen Umgebung, und sie nimmt in Richtung Küste zu. Die gemeinsame Histogramm-Analyse zeigt, dass die AOD-CDNC-Beziehung eine positive Sensitivität und eine nicht-lineare CDNC-LWP-Beziehung (Flüssigwasserpfad) aufweist; allerdings ist eine negative Sensitivität vorherrschend. Die Multi-Modellanalyse zeigt, dass die meisten Modelle eine stark positive AOD-CDNC-Empfindlichkeit aufweisen, was darauf hindeutet, dass der Wolkenalbedo-Effekt eine Nettokühlung bewirkt. Die allgemeinen Zirkulationsmodelle (GCM) zeigen einen negativen Strahlungsantrieb (-0,28 bis -1,36Wm−2) am Oberrand der Atmosphäre (TOA), wenn die Flussmethode verwendet wird. Dies unterstützt die positive AOD-CDNC-Empfindlichkeit und den daraus resultierenden negativen Strahlungsantrieb in GCMs. Der CDNC-LWP zeigt jedoch unterschiedliche Abhängigkeiten in den Modellen. In den GCMs wird die Wirkung der Wolkenmikrophysik bei der Abschätzung des Netto-Strahlungsantriebs nicht berücksichtigt. Um die Auswirkungen der Wolkenmikrophysik auf den Strahlungsantrieb einzubeziehen, haben wir einen statistischen Ansatz zur Berechnung des Nettostrahlungsantriebs gewählt. Die Ergebnisse zeigen, dass der Nettostrahlungsantrieb empfindlich auf die LWP-Änderung durch die Aerosolstörung reagiert

    A Methodology for Verifying Cloud Forecasts with VIIRS Imagery and Derived Cloud Products—A WRF Case Study

    Get PDF
    A methodology is presented to evaluate the accuracy of cloud cover fraction (CCf) forecasts generated by numerical weather prediction (NWP) and climate models. It is demonstrated with a case study consisting of simulations from theWeather Research and Forecasting (WRF) model. In this study, since the WRF CCf forecasts were initialized with reanalysis fields from the North American Mesoscale (NAM) Forecast System, the characteristics of the NAM CCf products were also evaluated. The procedures relied extensively upon manually-generated, binary cloud masks created from VIIRS (Visible Infrared Imager Radiometry Suite) imagery, which were subsequently converted into CCf truth at the resolution of the NAM and WRF gridded data. The initial results from the case study revealed biases toward under-clouding in the NAM CCf analyses and biases toward over-clouding in the WRF CCf products. These biases were evident in images created from the gridded NWP products when compared to VIIRS imagery and CCf truth data. Thus, additional simulations were completed to help assess the internal procedures used in the WRF model to translate moisture forecast fields into layered CCf products. Two additional sets of WRF CCf 24 h forecasts were generated for the region of interest using WRF restart files. One restart file was updated with CCf truth data and another was not changed. Over-clouded areas in the updated WRF restart file that were reduced with an update of the CCf truth data became over-clouded again in the WRF 24 h forecast, and were nearly identical to those from the unchanged restart file. It was concluded that the conversion of WRF forecast fields into layers of CCf products deserves closer examination in a future study

    Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-Muscat(5.0) and evaluation using satellite data

    Get PDF
    The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (Muscat) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25°g × g0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5g%, and the cloud droplet number concentration is reduced by 21.5g%

    Exploring Satellite-Derived Relationships between Cloud Droplet Number Concentration and Liquid Water Path Using a Large-Domain Large-Eddy Simulation

    Get PDF
    Important aspects of the adjustments to aerosol-cloud interactions can be examined using the relationship between cloud droplet number concentration (Nd) and liquid water path (LWP). Specifically, this relation can constrain the role of aerosols in leading to thicker or thinner clouds in response to adjustment mechanisms. This study investigates the satellite retrieved relationship between Nd and LWP for a selected case of mid-latitude continental clouds using high-resolution Large-eddy simulations (LES) over a large domain in weather prediction mode. Since the satellite retrieval uses the adiabatic assumption to derive the Nd, we have also considered adiabatic Nd (NAd) from the LES model for comparison. The joint histogram analysis shows that the NAd-LWP relationship in the LES model and the satellite is in approximate agreement. In both cases, the peak conditional probability (CP) is confined to lower NAd and LWP; the corresponding mean LWP (LWP) shows a weak relation with NAd. The CP shows a larger spread at higher NAd (>50 cm–3), and the LWP increases non-monotonically with increasing NAd in both cases. Nevertheless, both lack the negative NAd-LWP relationship at higher NAd, the entrainment effect on cloud droplets. In contrast, the model simulated Nd-LWP clearly illustrates a much more nonlinear (an increase in LWP with increasing Nd and a decrease in LWP at higher Nd) relationship, which clearly depicts the cloud lifetime and the entrainment effect. Additionally, our analysis demonstrates a regime dependency (marine and continental) in the NAd-LWP relation from the satellite retrievals. Comparing local vs large-scale statistics from satellite data shows that continental clouds exhibit only a weak nonlinear NAd-LWP relationship. Hence a regime-based Nd-LWP analysis is even more relevant when it comes to warm continental clouds and their comparison to satellite retrievals

    Exploring aerosol-cloud interaction in Southeast Pacific marine stratocumulus during VOCALS regional experiment

    No full text
    The marine stratocumulus clouds are highly sensitive to aerosol perturbations. In this study, we have explored the cloud susceptibility to aerosol using satellite observation and multi-model simulations over the Southeast Pacific Ocean (SEP). The climatology of satellite observation indicates that SEP is a relatively clean area with low aerosol optical depth (AOD). The SEP is a region of marine stratocumulus deck with cloud fraction (CF) reaching as high as 90% in many regions, with relatively low (140 cm−3) cloud droplet number concentration (CDNC) over the marine environment, and it increases as it moves towards the coast. The joint histogram analysis shows that the AOD-CDNC relation shows positive sensitivity and a non-linear CDNC-LWP (liquid water path) relationship; however, a negative sensitivity is dominant. The multimodel analysis shows that most models have a strong positive AOD-CDNC sensitivity, suggesting that the cloud albedo effect leads to net cooling. The general circulation models (GCM) reveal a negative radiative forcing (-0.28 to -1.36Wm−2) at the top of the atmosphere (TOA) when using the flux method. It supports the positive AODCDNC sensitivity and the resulting negative radiative forcing in GCMs. However, the CDNC-LWP shows a diverse relation in the models. In the GCMs, the effect of cloud microphysics is not considered while estimating the net radiative forcing. To include the effect of cloud microphysics in the radiative forcing estimates, we have proposed a statistical approach to calculate the net radiative forcing. The results show that the net radiative forcing is sensitive to the LWP change due to the aerosol perturbation.Die marinen Stratocumulus-Wolken reagieren sehr empfindlich auf Aerosol-Störungen. In dieser Studie haben wir die Anfälligkeit der Wolken für Aerosol anhand von Satellitenbeobachtungen und Multi-Modellsimulationen über dem Südostpazifik (SEP) untersucht. Die Klimatologie der Satellitenbeobachtung zeigt, dass der SEP ein relativ sauberes Gebiet mit geringer Aerosol optischer Dicke (AOD) ist. Der SEP ist eine Region mit mariner Stratocumulus-Decke mit einer Wolkbedeckungsgrad (CF), der in vielen Regionen bis zu 90% erreicht, mit einer relativ niedrigen (140 cm−3) Wolkentröpfchenanzahlkonzentration (CDNC) über der marinen Umgebung, und sie nimmt in Richtung Küste zu. Die gemeinsame Histogramm-Analyse zeigt, dass die AOD-CDNC-Beziehung eine positive Sensitivität und eine nicht-lineare CDNC-LWP-Beziehung (Flüssigwasserpfad) aufweist; allerdings ist eine negative Sensitivität vorherrschend. Die Multi-Modellanalyse zeigt, dass die meisten Modelle eine stark positive AOD-CDNC-Empfindlichkeit aufweisen, was darauf hindeutet, dass der Wolkenalbedo-Effekt eine Nettokühlung bewirkt. Die allgemeinen Zirkulationsmodelle (GCM) zeigen einen negativen Strahlungsantrieb (-0,28 bis -1,36Wm−2) am Oberrand der Atmosphäre (TOA), wenn die Flussmethode verwendet wird. Dies unterstützt die positive AOD-CDNC-Empfindlichkeit und den daraus resultierenden negativen Strahlungsantrieb in GCMs. Der CDNC-LWP zeigt jedoch unterschiedliche Abhängigkeiten in den Modellen. In den GCMs wird die Wirkung der Wolkenmikrophysik bei der Abschätzung des Netto-Strahlungsantriebs nicht berücksichtigt. Um die Auswirkungen der Wolkenmikrophysik auf den Strahlungsantrieb einzubeziehen, haben wir einen statistischen Ansatz zur Berechnung des Nettostrahlungsantriebs gewählt. Die Ergebnisse zeigen, dass der Nettostrahlungsantrieb empfindlich auf die LWP-Änderung durch die Aerosolstörung reagiert

    Exploring aerosol-cloud interaction in Southeast Pacific marine stratocumulus during VOCALS regional experiment

    No full text
    The marine stratocumulus clouds are highly sensitive to aerosol perturbations. In this study, we have explored the cloud susceptibility to aerosol using satellite observation and multi-model simulations over the Southeast Pacific Ocean (SEP). The climatology of satellite observation indicates that SEP is a relatively clean area with low aerosol optical depth (AOD). The SEP is a region of marine stratocumulus deck with cloud fraction (CF) reaching as high as 90% in many regions, with relatively low (140 cm−3) cloud droplet number concentration (CDNC) over the marine environment, and it increases as it moves towards the coast. The joint histogram analysis shows that the AOD-CDNC relation shows positive sensitivity and a non-linear CDNC-LWP (liquid water path) relationship; however, a negative sensitivity is dominant. The multimodel analysis shows that most models have a strong positive AOD-CDNC sensitivity, suggesting that the cloud albedo effect leads to net cooling. The general circulation models (GCM) reveal a negative radiative forcing (-0.28 to -1.36Wm−2) at the top of the atmosphere (TOA) when using the flux method. It supports the positive AODCDNC sensitivity and the resulting negative radiative forcing in GCMs. However, the CDNC-LWP shows a diverse relation in the models. In the GCMs, the effect of cloud microphysics is not considered while estimating the net radiative forcing. To include the effect of cloud microphysics in the radiative forcing estimates, we have proposed a statistical approach to calculate the net radiative forcing. The results show that the net radiative forcing is sensitive to the LWP change due to the aerosol perturbation.Die marinen Stratocumulus-Wolken reagieren sehr empfindlich auf Aerosol-Störungen. In dieser Studie haben wir die Anfälligkeit der Wolken für Aerosol anhand von Satellitenbeobachtungen und Multi-Modellsimulationen über dem Südostpazifik (SEP) untersucht. Die Klimatologie der Satellitenbeobachtung zeigt, dass der SEP ein relativ sauberes Gebiet mit geringer Aerosol optischer Dicke (AOD) ist. Der SEP ist eine Region mit mariner Stratocumulus-Decke mit einer Wolkbedeckungsgrad (CF), der in vielen Regionen bis zu 90% erreicht, mit einer relativ niedrigen (140 cm−3) Wolkentröpfchenanzahlkonzentration (CDNC) über der marinen Umgebung, und sie nimmt in Richtung Küste zu. Die gemeinsame Histogramm-Analyse zeigt, dass die AOD-CDNC-Beziehung eine positive Sensitivität und eine nicht-lineare CDNC-LWP-Beziehung (Flüssigwasserpfad) aufweist; allerdings ist eine negative Sensitivität vorherrschend. Die Multi-Modellanalyse zeigt, dass die meisten Modelle eine stark positive AOD-CDNC-Empfindlichkeit aufweisen, was darauf hindeutet, dass der Wolkenalbedo-Effekt eine Nettokühlung bewirkt. Die allgemeinen Zirkulationsmodelle (GCM) zeigen einen negativen Strahlungsantrieb (-0,28 bis -1,36Wm−2) am Oberrand der Atmosphäre (TOA), wenn die Flussmethode verwendet wird. Dies unterstützt die positive AOD-CDNC-Empfindlichkeit und den daraus resultierenden negativen Strahlungsantrieb in GCMs. Der CDNC-LWP zeigt jedoch unterschiedliche Abhängigkeiten in den Modellen. In den GCMs wird die Wirkung der Wolkenmikrophysik bei der Abschätzung des Netto-Strahlungsantriebs nicht berücksichtigt. Um die Auswirkungen der Wolkenmikrophysik auf den Strahlungsantrieb einzubeziehen, haben wir einen statistischen Ansatz zur Berechnung des Nettostrahlungsantriebs gewählt. Die Ergebnisse zeigen, dass der Nettostrahlungsantrieb empfindlich auf die LWP-Änderung durch die Aerosolstörung reagiert

    Arctic Climate Response to European Radiative Forcing: A Deep Learning Approach (Experiment run daily dataset)

    No full text
    <p>0-year Experiment run with excerted negative radiative forcing over Europe with MPI-ESM1.2 coupled atmosphere-ocean–land surface model with preindustrial boundary and initial condition (for more information see the paper) </p&gt

    Arctic Climate Response to European Radiative Forcing: A Deep Learning Approach (control run daily dataset)

    No full text
    <p>30-year Control run with MPI-ESM1.2 coupled atmosphere-ocean–land surface model with preindustrial boundary and initial condition (for more information see the paper)<br> </p&gt

    Substantial Climate Response outside the Target Area in an Idealized Experiment of Regional Radiation Management

    No full text
    Radiation management (RM) has been proposed as a conceivable climate engineering (CE) intervention to mitigate global warming. In this study, we used a coupled climate model (MPI-ESM) with a very idealized setup to investigate the efficacy and risks of CE at a local scale in space and time (regional radiation management, RRM) assuming that cloud modification is technically possible. RM is implemented in the climate model by the brightening of low-level clouds (solar radiation management, SRM) and thinning of cirrus (terrestrial radiation management, TRM). The region chosen is North America, and we simulated a period of 30 years. The implemented sustained RM resulted in a net local radiative forcing of −9.8 Wm−2 and a local cooling of −0.8 K. Surface temperature (SAT) extremes (90th and 10th percentiles) show negative anomalies in the target region. However, substantial climate impacts were also simulated outside the target area, with warming in the Arctic and pronounced precipitation change in the eastern Pacific. As a variant of RRM, a targeted intervention to suppress heat waves (HW) was investigated in further simulations by implementing intermittent cloud modification locally, prior to the simulated HW situations. In most cases, the intermittent RRM results in a successful reduction of temperatures locally, with substantially smaller impacts outside the target area compared to the sustained RRM
    corecore