90 research outputs found
Intraband Optical Absorption In Superlattices In An In-plane Magnetic Field
The absorption coefficient of GaAs-AlxGa1-xAs superlattices in an in-plane magnetic field is studied in the case of intraband transitions between electronic magnetic levels. A detailed analysis of the absorption peaks and their dependence on the magnetic-field intensity, superlattice period, and temperature, is performed. By taking into account the detailed properties of the magnetic subbands, the joint density of states, the transition matrix elements, and the effective sheet concentration of electrons involved in the optical transitions, a simple theoretical explanation is given for some experimental results previously reported. © 1993 The American Physical Society.4874516452
Carrier Densities And Electron-hole Recombination Lifetimes In Gaas-(ga,al)as Quantum-well Photoluminescence
A quantum-mechanical calculation of the carrier densities and electron-hole recombination lifetimes in GaAs-(Ga,Al)As quantum wells is performed, under steady-state optical excitation conditions and in the high-temperature regime. The variables are the continuous-wave (cw) laser intensity, well widths, and acceptor distribution in the well. Radiative recombination of electrons with free holes and holes bound at neutral acceptors are considered. Our calculations for the dependence of the electron density on laser intensity are in quantitative agreement with recent experimental results for multiple asymmetric coupled quantum wells at T=300 K and for intermediate excitation. Also, results for the carrier-density-dependent e-h recombination decay time at T=155 K are in good agreement with recent experimental data in semiconductor quantum wells.75166066
Effects Of Crossed Electric And Magnetic Fields On The Electronic And Excitonic States In Bulk Gaas And Gaas Ga1-x Alx As Quantum Wells
The variational procedure in the effective-mass and parabolic-band approximations is used in order to investigate the effects of crossed electric and in-plane magnetic fields on the electronic and exciton properties in semiconductor heterostructures. Calculations are performed for bulk GaAs and GaAs Ga1-x Alx As quantum wells, for applied magnetic fields parallel to the layers and electric fields in the growth direction, and it is shown that the combined effects on the heterostructure properties of the applied crossed electric and magnetic fields and the direct coupling between the center-of-mass and internal exciton motions may be dealt with via a simple parameter representing the spatial distance between the centers of the electron and hole magnetic parabolas. Exciton properties are analyzed by using a simple hydrogenlike envelope excitonic wave function and present theoretical results are found in fair agreement with available experimental measurements on the diamagnetic shift of the photoluminescence peak position of GaAs Ga1-x Alx As quantum wells under in-plane magnetic fields. © 2007 The American Physical Society.753Whittaker, D.M., Fisher, T.A., Simmonds, P.E., Skolnick, M.S., Smith, R.S., (1991) Phys. Rev. Lett., 67, p. 887. , PRLTAO 0031-9007 10.1103/PhysRevLett.67.887Fritze, M., Perakis, I.E., Getter, A., Knox, W., Goossen, K.W., Cunningham, J.E., Jackson, S.A., (1996) Phys. Rev. Lett., 76, p. 106. , PRLTAO 0031-9007 10.1103/PhysRevLett.76.106Butov, L.V., Mintsev, A.V., Lozovik, Y.E., Campman, K.L., Gossard, A.C., (2000) Phys. Rev. B, 62, p. 1548. , PRBMDO 0163-1829 10.1103/PhysRevB.62.1548Parlangeli, A., Christianen, P.C.M., Maan, J.C., Soerensen, C.B., Lindelof, P.E., (2000) Phys. Status Solidi a, 178, p. 45. , PSSABA 0031-8965 10.1002/1521-396X(200003)178:13.3. CO;2-WParlangeli, A., Christianen, P.C.M., Maan, J.C., Tokatly, I.V., Soerensen, C.B., Lindelof, P.E., (2000) Phys. Rev. B, 62, p. 15323. , PRBMDO 0163-1829 10.1103/PhysRevB.62.15323Orlita, M., Grill, R., Zvára, M., Döhler, G.H., Malzer, S., Byszewski, M., Soubusta, J., (2004) Phys. Rev. B, 70, p. 075309. , PRBMDO 0163-1829 10.1103/PhysRevB.70.075309Butov, L.V., Lai, C.W., Chemla, D.S., Lozovik, Y.E., Campman, K.L., Gossard, A.C., (2001) Phys. Rev. Lett., 87, p. 216804. , PRLTAO 0031-9007 10.1103/PhysRevLett.87.216804Butov, L.V., (2004) J. Phys.: Condens. Matter, 16, p. 1577. , JCOMEL 0953-8984 10.1088/0953-8984/16/50/R02Oberli, D.Y., Böhm, G., Weimann, G., Brum, J.A., (1994) Phys. Rev. B, 49, p. 5757. , PRBMDO 0163-1829 10.1103/PhysRevB.49.5757Feldmann, J., Peter, G., Göbel, E.O., Dawson, P., Moore, K., Foxon, C., Elliott, R.J., (1987) Phys. Rev. Lett., 59, p. 2337. , PRLTAO 0031-9007 10.1103/PhysRevLett.59.2337Houdré, R., Weisbuch, C., Stanley, R.P., Oesterle, U., Pellandini, P., Ilegems, M., (1994) Phys. Rev. Lett., 73, p. 2043. , PRLTAO 0031-9007 10.1103/PhysRevLett.73.2043Tredicucci, A., Chen, Y., Pellegrini, V., Börger, M., Sorba, L., Beltram, F., Bassani, F., (1995) Phys. Rev. Lett., 75, p. 3906. , PRLTAO 0031-9007 10.1103/PhysRevLett.75.3906Ashkinadze, B.M., Linder, E., Cohen, E., Pfeiffer, L.N., (2005) Phys. Rev. B, 71, p. 045303. , PRBMDO 0163-1829 10.1103/PhysRevB.71.045303Gorkov, L.P., Dzyaloshinskii, I.E., (1967) Zh. Eksp. Teor. Fiz., 53, p. 717. , ZETFA7 0044-4510Gorkov, L.P., Dzyaloshinskii, I.E., (1968) Sov. Phys. JETP, 26, p. 449. , SPHJAR 0038-5646Paquet, D., Rice, T.M., Ueda, K., (1985) Phys. Rev. B, 32, p. 5208. , PRBMDO 0163-1829 10.1103/PhysRevB.32.5208Dignam, M.M., Sipe, J.E., (1992) Phys. Rev. B, 45, p. 6819. , PRBMDO 0163-1829 10.1103/PhysRevB.45.6819Imamoglu, A., (1996) Phys. Rev. B, 54, p. 14285. , PRBMDO 0163-1829 10.1103/PhysRevB.54.R14285Lozovik, Y.E., Ruvinskii, A.M., (1997) Zh. Eksp. Teor. Fiz., 112, p. 1791. , ZETFA7 0044-4510Lozovik, Y.E., Ruvinskii, A.M., (1997) JETP, 85, p. 979. , JTPHES 1063-7761 10.1134/1.558404Lozovik, Y.E., Ovchinnikov, I.V., Yu. Volkov, S., Butov., L.V., Chemla, D.S., (2002) Phys. Rev. B, 65, p. 235304. , PRBMDO 0163-1829 10.1103/PhysRevB.65.235304Lozovik, Y.E., Yu. Volkov, S., (2003) Zh. Eksp. Teor. Fiz., 123, p. 635. , ZETFA7 0044-4510Lozovik, Y.E., Yu. Volkov, S., (2003) JETP, 96, p. 564. , JTPHES 1063-7761 10.1134/1.1567431Gorbatsevich, A.A., Tokatly, I.V., (1998) Semicond. Sci. Technol., 13, p. 288. , SSTEET 0268-1242 10.1088/0268-1242/13/3/007Chang, K., Peeters, F.M., (2001) Phys. Rev. B, 63, p. 153307. , PRBMDO 0163-1829 10.1103/PhysRevB.63.153307Chang, K., Xia, J.B., Wu, H.B., Feng, S.L., (2002) Appl. Phys. Lett., 80, p. 1788. , APPLAB 0003-6951 10.1063/1.1459491Chang, K., Jiang, D.S., Xia, J.B., (2004) J. Appl. Phys., 95, p. 752. , JAPIAU 0021-8979 10.1063/1.1631748Kaputkina, N.E., Lozovik, Y.E., (2002) Physica e (Amsterdam), 12, p. 323. , PELNFM 1386-9477 10.1016/S1386-9477(01)00356-3Niculescu, E.C., (2003) Superlattices Microstruct., 33, p. 103. , SUMIEK 0749-6036Reyes-Gómez, E., Oliveira, L.E., De Dios-Leyva, M., (2005) Phys. Rev. B, 71, p. 045316. , PRBMDO 0163-1829 10.1103/PhysRevB.71.045316Coli, G., Bajaj, K.K., (2000) Phys. Rev. B, 61, p. 4714. , PRBMDO 0163-1829 10.1103/PhysRevB.61.4714Antonelli, A., Cen, J., Bajaj, K.K., (1996) Semicond. Sci. Technol., 11, p. 74. , SSTEET 0268-1242 10.1088/0268-1242/11/1/017Latgé, A., Porras-Montenegro, N., De Dios-Leyva, M., Oliveira, L.E., (1996) Phys. Rev. B, 53, p. 10160. , PRBMDO 0163-1829 10.1103/PhysRevB.53.10160Barbosa, L.H.M., Latgé, A., De Dios-Leyva, M., Oliveira, L.E., (1996) Solid State Commun., 98, p. 215. , SSCOA4 0038-1098 10.1016/0038-1098(96)00037-3Ribeiro, F.J., Latgé, A., Oliveira, L.E., (1996) J. Appl. Phys., 80, p. 2536. , JAPIAU 0021-8979 10.1063/1.363041Latgé, A., Porras-Montenegro, N., De Dios-Leyva, M., Oliveira, L.E., (1998) Phys. Status Solidi B, 210, p. 655. , PSSBBD 0370-1972 10.1002/(SICI)1521-3951(199812)210:23.3.CO;2-4Latgé, A., Porras-Montenegro, N., Oliveira, L.E., (1992) Phys. Rev. B, 45, p. 6742. , PRBMDO 0163-1829 10.1103/PhysRevB.45.6742Oliveira, L.E., Porras-Montenegro, N., Latgé, A., (1993) Phys. Rev. B, 47, p. 13864. , PRBMDO 0163-1829 10.1103/PhysRevB.47.13864Duque, C.A., Beltrán, C.L., Montes, A., Porras-Montenegro, N., Oliveira, L.E., (2000) Phys. Rev. B, 61, p. 9936. , PRBMDO 0163-1829 10.1103/PhysRevB.61.9936Herbert Li, E., (2000) Physica e (Amsterdam), 5, p. 215. , PELNFM 1386-9477 10.1016/S1386-9477(99)00262-3Gerlach, B., Wüsthoff, J., Dzero, M.O., Smondyrev, M.A., (1998) Phys. Rev. B, 58, p. 10568. , PRBMDO 0163-1829 10.1103/PhysRevB.58.10568Xia, J.-B., Fan, W.-J., (1989) Phys. Rev. B, 40, p. 8508. , PRBMDO 0163-1829 10.1103/PhysRevB.40.8508De Dios-Leyva, M., Bruno-Alfonso, A., Oliveira, L.E., (1997) J. Phys.: Condens. Matter, 9, p. 1005. , JCOMEL 0953-8984 10.1088/0953-8984/9/5/007Reyes-Gómez, E., Matos-Abiague, A., Perdomo-Leiva, C.A., De Dios-Leyva, M., Oliveira, L.E., (2000) Phys. Rev. B, 61, p. 13104. , PRBMDO 0163-1829 10.1103/PhysRevB.61.13104Chaudhuri, S., Bajaj, K.K., (1984) Solid State Commun., 52, p. 967. , SSCOA4 0038-1098 10.1016/0038-1098(84)90489-7Chaudhuri, S., Bajaj, K.K., (1984) Phys. Rev. B, 29, p. 1803. , PRBMDO 0163-1829 10.1103/PhysRevB.29.180
Exciton diamagnetic shift in GaAs=Ga1xAlxAs quantum wells under in-plane magnetic fields
ABSTRACT: Using a variational procedure in the effective-mass and parabolic-band approximations we investigate the effects of in-plane magnetic fields on the exciton states in single quantum wells. Exciton properties are analyzed by using a simple hydrogen-like variational envelope wave-function. Present theoretical results are compared with available experimental measurements on the diamagnetic shift of the photoluminescence peak position of quantum wells under in-plane magnetic fields [Phys. Rev. B 71 (2005) 045303]
Effects Of Non-parabolicity And In-plane Magnetic Fields On The Cyclotron Effective Mass And G -factor In Gaas-(ga,al)as Quantum Wells
The envelope-function approach is used to theoretically study the effects of in-plane magnetic fields on the cyclotron effective mass and Landé g -factor associated to conduction electrons in single GaAs-(Ga,Al)As quantum wells. Non-parabolic and anisotropy effects are included in the calculations within the Ogg-McCombe effective Hamiltonian to describe the electron states in the semiconductor heterostructure. The electronic structure and both the cyclotron effective mass and Landé g -factor were obtained, by expanding the corresponding envelope wave functions in terms of harmonic-oscillator wave functions, as functions of the in-plane magnetic field, cyclotron orbit-center position, and quantum-well widths. This procedure allows us to consider the different terms in the Hamiltonian on equal footing, avoiding therefore the use of approximate methods to obtain the envelope wave functions and the corresponding energy spectrum. Results obtained for the Landé g -factor were found in quite good agreement with available experimental measurements. © 2006 The American Physical Society.738Bode, M., Getzlaff, M., Wiesendanger, R., (1998) Phys. Rev. Lett., 81, p. 4256. , PRLTAO 0031-9007 10.1103/PhysRevLett.81.4256Heinze, S., Bode, M., Kubetzka, A., Pietzsch, O., Nie, X., Blugel, S., Wiesendanger, R., (2000) Science, 288, p. 1805. , SCIEAS 0036-8075 10.1126/science.288.5472.1805Nussinov, Z., Crommie, M.F., Balatsky, A.V., (2003) Phys. Rev. B, 68, p. 085402. , PRBMDO 0163-1829 10.1103/PhysRevB.68.085402Nielsen, M.A., Chuang, I.L., (2000) Quantum Computation and Quantum Information, , Cambridge University Press, CambridgeSalis, G., Kato, Y.K., Ensslin, K., Driscol, D.C., Gossard, A.C., Awschalom, D.D., (2001) Nature, 414, p. 619. , NATUAS 0028-0836 10.1038/414619aZutic, I., Fabian, J., Das Sarma, S., (2004) Rev. Mod. Phys., 76, p. 323. , RMPHAT 0034-6861 10.1103/RevModPhys.76.323Engel, H.-A., Loss, D., (2005) Science, 309, p. 586. , SCIEAS 0036-8075 10.1126/science.1113203Osório, F.A.P., Degani, M.H., Hipólito, O., (1988) Phys. Rev. B, 38, p. 8477. , PRBMDO. 0163-1829. 10.1103/PhysRevB.38.8477Nicholas, R.J., Hopkins, M.A., Barnes, D.J., Brummell, M.A., Sigg, H., Heitmann, D., Ensslin, K., Weimann, G., (1989) Phys. Rev. B, 39, p. 10955. , PRBMDO 0163-1829 10.1103/PhysRevB.39.10955Huant, S., Mandray, A., Etienne, B., (1992) Phys. Rev. B, 46, p. 2613. , PRBMDO 0163-1829 10.1103/PhysRevB.46.2613Cole, B.E., Chamberlain, J.M., Henini, M., Cheng, T., Batty, W., Wittlin, A., Perenboom, J.A.A.J., Singleton, J., (1997) Phys. Rev. B, 55, p. 2503. , PRBMDO 0163-1829 10.1103/PhysRevB.55.2503Johnson, G.R., Kana-Ah, A., Cavenett, B.C., Skolnick, M.S., Baas, S.J., (1987) Semicond. Sci. Technol., 2, p. 182. , SSTEET 0268-1242 10.1088/0268-1242/2/3/010Dobers, M., Klitzing K, V., Weimann, G., (1988) Phys. Rev. B, 38, p. 5453. , PRBMDO 0163-1829 10.1103/PhysRevB.38.5453Snelling, M.J., Flinn, G.P., Plaut, A.S., Harley, R.T., Tropper, A.C., Eccleston, R., Phillips, C.C., (1991) Phys. Rev. B, 44, p. 11345. , PRBMDO 0163-1829 10.1103/PhysRevB.44.11345Heberle, A.P., Rühle, W.W., Ploog, K., (1994) Phys. Rev. Lett., 72, p. 3887. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.72.3887Hannak, R.M., Oestreich, M., Heberle, A.P., Ruhle, W.W., Kohler, K., (1995) Solid State Commun., 93, p. 313. , SSCOA4 0038-1098 10.1016/0038-1098(94)00784-5Le Jeune, P., Robart, D., Marie, X., Amand, T., Brosseau, M., Barrau, J., Kalevich, V., Rodichev, D., (1997) Semicond. Sci. Technol., 12, p. 380. , SSTEET 0268-1242 10.1088/0268-1242/12/4/006Malinowski, A., Harley, R.T., (2000) Phys. Rev. B, 62, p. 2051. , PRBMDO 0163-1829 10.1103/PhysRevB.62.2051Sapega, V.F., Ruf, T., Cardona, M., Ploog, K., Ivchenko, E.L., Mirlin, D.N., (1994) Phys. Rev. B, 50, p. 2510. , PRBMDO 0163-1829 10.1103/PhysRevB.50.2510Medeiros-Ribeiro, G., Pinheiro, M.V.B., Pimentel, V.L., Marega, E., (2002) Appl. Phys. Lett., 80, p. 4229. , APPLAB 0003-6951 10.1063/1.1483112Lindermann, S., Ihn, T., Heinzel, T., Zwerger, W., Ensslin, K., Maranowski, K., Gossard, A.C., (2002) Phys. Rev. B, 66, p. 195314. , PRBMDO 0163-1829 10.1103/PhysRevB.66.195314Hanson, R., Witkamp, B., Vandersypen, L.M.K., Willems Van Beveren, L.H., Elzerman, J.M., Kouwenhoven, L.P., (2003) Phys. Rev. Lett., 91, p. 196802. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.196802Maude, D.K., Potemski, M., Portal, J.C., Henini, M., Eaves, L., Hill, G., Pate, M.A., (1996) Phys. Rev. Lett., 77, p. 4604. , PRLTAO 0031-9007 10.1103/PhysRevLett.77.4604Kato, Y.K., Myers, R.C., Driscol, D.C., Gossard, A.C., Levy, J., Awschalom, D.D., (2003) Science, 299, p. 1201. , SCIEAS 0036-8075 10.1126/science.1080880Kato, Y.K., Myers, R.C., Gossard, A.C., Awschalom, D.D., (2004) Science, 306, p. 1910. , SCIEAS 0036-8075 10.1126/science.1105514Bracker, A.S., Stinaff, E.A., Gammon, D., Ware, M.E., Tischler, J.G., Shabaev, A., Efros, A.L., Merkulov, I.A., (2005) Phys. Rev. Lett., 94, p. 047402. , PRLTAO 0031-9007 10.1103/PhysRevLett.94.047402Rashba, E.I., Efros, A.L., (2003) Phys. Rev. Lett., 91, p. 126405. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.126405De Sousa, R., Das Sarma, S., (2003) Phys. Rev. B, 68, p. 155330. , PRBMDO 0163-1829 10.1103/PhysRevB.68.155330Prado, S.J., Trallero-Giner, C., Alcalde, A.M., Lopez-Richard, V., Marques, G.E., (2004) Phys. Rev. B, 69, p. 201310. , PRBMDO 0163-1829 10.1103/PhysRevB.69.201310Destefani, C.F., Ulloa, S.E., (2005) Phys. Rev. B, 71, p. 161303. , PRBMDO 0163-1829 10.1103/PhysRevB.71.161303Ogg, N.R., (1966) Proc. Phys. Soc. London, 89, p. 431. , PPSOAU 0370-1328 10.1088/0370-1328/89/2/326McCombe, B.O., (1969) Phys. Rev., 181, p. 1206. , PHRVAO 0031-899X 10.1103/PhysRev.181.1206Maan, J.C., (1987) Festkörperprobleme, 27, p. 137. , edited by P. Grosse. Advances in Solid State Physics, Vol. Vieweg, BraunschweigMaan, J.C., (1988) Surf. Sci., 196, p. 518. , SUSCAS 0039-6028 10.1016/0039-6028(88)90735-2Platero, G., Altarelli, M., (1989) Phys. Rev. B, 39, p. 3758. , PRBMDO 0163-1829 10.1103/PhysRevB.39.3758Braun, M., Rössler, U., (1985) J. Phys. C, 18, p. 3365. , JPSOAW. 0022-3719. 10.1088/0022-3719/18/17/013Golubev, V.G., Ivanov-Omskii, V.I., Minervin, I.G., Osutin, A.V., Polyakov, D.G., (1985) Sov. Phys. JETP, 61, p. 1214. , SPHJAR 0038-5646Sabín Del Valle, J., López-Gondar, J., De Dios-Leyva, M., (1989) Phys. Status Solidi B, 151, p. 127. , PSSBBD. 0370-1972Bruno-Alfonso, A., Diago-Cisneros, L., De Dios-Leyva, M., (1995) J. Appl. Phys., 77, p. 2837. , JAPIAU 0021-8979 10.1063/1.359540Li, E.H., (2000) Physica e (Amsterdam), 5, p. 215. , PELNFM 1386-9477 10.1016/S1386-9477(99)00262-3Hermann, C., Weisbuch, C., (1977) Phys. Rev. B, 15, p. 823. , PLRBAQ 0556-2805 10.1103/PhysRevB.15.823Dresselhaus, G., (1955) Phys. Rev., 100, p. 580. , PHRVAO 0031-899X 10.1103/PhysRev.100.580Casey Jr., R.C., (1978) J. Appl. Phys., 49, p. 3684. , JAPIAU 0021-8979 10.1063/1.325421Dingle, R., (1975) Festkörperprobleme XV, p. 21. , edited by H. J. Queisser. Pergamon, BraunschweigMiller, R.C., Kleinman, D.A., Gossard, A.C., (1984) Phys. Rev. B, 29, p. 7085. , PRBMDO 0163-1829 10.1103/PhysRevB.29.7085Wang, W., Mendez, E.E., Stern, F., (1984) Appl. Phys. Lett., 45, p. 639. , APPLAB 0003-6951 10.1063/1.95339Lommer, G., Malcher, F., Rössler, U., (1985) Phys. Rev. B, 32, p. 6965. , PRBMDO. 0163-1829. 10.1103/PhysRevB.32.6965Malcher, F., Lommer, G., Rössler, U., (1986) Superlattices Microstruct., 2, p. 267. , SUMIEK. 0749-6036. 10.1006/spmi.1996.0195Lommer, G., Malcher, F., Rössler, U., (1986) Superlattices Microstruct., 2, p. 273. , SUMIEK. 0749-6036. 10.1016/0749-6036(86)90031-5Kainz, J., Rössler, U., Winkler, R., (2003) Phys. Rev. B, 68, p. 075322. , PRBMDO. 0163-1829. 10.1103/PhysRevB.68.075322Könemann, J., Haug, R.J., Maude, D.K., Falko, V.I., Altshuler, B.L., (2005) Phys. Rev. Lett., 94, p. 226404. , PRLTAO. 0031-9007. 10.1103/PhysRevLett.94.226404D'Yakonov, M.I., Perel, V.I., (1971) Sov. Phys. Solid State, 13, p. 3023. , SPSSA7 0038-5654Kim, N., La Rocca, G.C., Rodriguez, S., (1989) Phys. Rev. B, 40, p. 3001. , PRBMDO 0163-1829 10.1103/PhysRevB.40.3001Das, B., Datta, S., Reifenberger, R., (1990) Phys. Rev. B, 41, p. 8278. , PRBMDO 0163-1829 10.1103/PhysRevB.41.827
Self-similarity And Anti-self-similarity Of The Effective Landé G Factor In Gaas-(ga,al)as Fibonacci Superlattices Under In-plane Magnetic Fields
A theoretical study of the effects of in-plane magnetic fields on the Landé g factor associated to conduction electrons in GaAs-(Ga,Al)As Fibonacci superlattices is presented. We have used the Ogg-McCombe effective Hamiltonian, which includes nonparabolic and anisotropy effects, in order to describe the electron states in the Fibonacci heterostructure. We have expanded the corresponding electron envelope wave functions in terms of harmonic-oscillator wave functions, and obtained the Landé g factor for magnetic fields related by even powers of the golden mean τ=(1+5)2. Theoretical results for GaAs-(Ga,Al)As Fibonacci superlattices, under magnetic-field values scaled by τ2n, clearly exhibit a self-similar (for even n) or anti-self-similar (for odd n) behavior for the Landé g factors, as appropriate. © 2006 The American Physical Society.743Merlin, R., Bajema, K., Clarke, R., Juang, F.Y., Bhattacharya, P.K., (1985) Phys. Rev. Lett., 55, p. 1768. , PRLTAO 0031-9007 10.1103/PhysRevLett.55.1768Wang, Y.Y., Maan, J.C., (1989) Phys. Rev. B, 40, p. 1955. , PRBMDO 0163-1829 10.1103/PhysRevB.40.1955Toet, D., Potemski, M., Wang, Y.Y., Maan, J.C., Tapfer, L., Ploog, K., (1991) Phys. Rev. Lett., 66, p. 2128. , PRLTAO 0031-9007 10.1103/PhysRevLett.66.2128Maan, J.C., Chitta, V., Toet, D., Potemski, M., Ploog, K., (1992) Springer Series in Solid-State Sciences, 101, p. 549. , edited by G. Landwehr (Springer, BerlinBruno-Alfonso, A., Oliveira, L.E., De Dios-Leyva, M., (1995) Appl. Phys. Lett., 67, p. 536. , APPLAB 0003-6951 10.1063/1.115180Bruno-Alfonso, A., Reyes-Gómez, E., Oliveira, L.E., De Dios-Leyva, M., (1995) J. Appl. Phys., 78, p. 15. , JAPIAU. 0021-8979. 10.1063/1.360240De Dios-Leyva, M., Bruno-Alfonso, A., Reyes-Gómez, E., Oliveira, L.E., (1995) J. Phys.: Condens. Matter, 7, p. 9799. , JCOMEL. 0953-8984. 10.1088/0953-8984/7/50/014Nielsen, M.A., Chuang, I.L., (2000) Quantum Computation and Quantum Information, , Cambridge University Press, CambridgeSalis, G., Kato, Y.K., Ensslin, K., Driscol, D.C., Gossard, A.C., Awschalom, D.D., (2001) Nature (London), 414, p. 619. , NATUAS 0028-0836 10.1038/414619aZutic, I., Fabian, J., Das Sarma, S., (2004) Rev. Mod. Phys., 76, p. 323. , RMPHAT 0034-6861 10.1103/RevModPhys.76.323Engel, H.-A., Loss, D., (2005) Science, 309, p. 586. , SCIEAS 0036-8075 10.1126/science.1113203Hermann, C., Weisbuch, C., (1977) Phys. Rev. B, 15, p. 823. , PLRBAQ 0556-2805 10.1103/PhysRevB.15.823Le Jeune, P., Robart, D., Marie, X., Amand, T., Brosseau, M., Barrau, J., Kalevich, V., Rodichev, D., (1997) Semicond. Sci. Technol., 12, p. 380. , SSTEET 0268-1242 10.1088/0268-1242/12/4/006Malinowski, A., Harley, R.T., (2000) Phys. Rev. B, 62, p. 2051. , PRBMDO 0163-1829 10.1103/PhysRevB.62.2051Sapega, V.F., Ruf, T., Cardona, M., Ploog, K., Ivchenko, E.L., Mirlin, D.N., (1994) Phys. Rev. B, 50, p. 2510. , PRBMDO 0163-1829 10.1103/PhysRevB.50.2510Medeiros-Ribeiro, G., Pinheiro, M.V.B., Pimentel, V.L., Marega, E., (2002) Appl. Phys. Lett., 80, p. 4229. , APPLAB 0003-6951 10.1063/1.1483112Hanson, R., Witkamp, B., Vandersypen, L.M.K., Willems Van Beveren, L.H., Elzerman, J.M., Kouwenhoven, L.P., (2003) Phys. Rev. Lett., 91, p. 196802. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.196802Rashba, E.I., Efros, A.L., (2003) Phys. Rev. Lett., 91, p. 126405. , PRLTAO 0031-9007 10.1103/PhysRevLett.91.126405De Sousa, R., Das Sarma, S., (2003) Phys. Rev. B, 68, p. 155330. , PRBMDO 0163-1829 10.1103/PhysRevB.68.155330Prado, S.J., Trallero-Giner, C., Alcalde, A.M., Lopez-Richard, V., Marques, G.E., (2004) Phys. Rev. B, 69, p. 201310. , PRBMDO 0163-1829 10.1103/PhysRevB.69.201310Destefani, C.F., Ulloa, S.E., (2005) Phys. Rev. B, 71, p. 161303. , PRBMDO 0163-1829 10.1103/PhysRevB.71.161303Ogg, N.R., (1966) Proc. Phys. Soc. London, 89, p. 431. , PPSOAU 0370-1328 10.1088/0370-1328/89/2/326McCombe, B.O., (1969) Phys. Rev., 181, p. 1206. , PHRVAO 0031-899X 10.1103/PhysRev.181.1206Braun, M., Rössler, U., (1985) J. Phys. C, 18, p. 3365. , JPSOAW. 0022-3719. 10.1088/0022-3719/18/17/013Golubev, V.G., Ivanov-Omskii, V.I., Minervin, I.G., Osutin, A.V., Polyakov, D.G., (1985) Sov. Phys. JETP, 61, p. 1214. , SPHJAR 0038-5646De Dios-Leyva, M., Reyes-Gómez, E., Perdomo-Leiva, C.A., Oliveira, L.E., (2006) Phys. Rev. B, 73, p. 085316. , PRBMDO. 0163-1829. 10.1103/PhysRevB.73.085316Li, E.H., (2000) Physica e (Amsterdam), 5, p. 215. , PELNFM 1386-9477 10.1016/S1386-9477(99)00262-3Dresselhaus, G., (1955) Phys. Rev., 100, p. 580. , PHRVAO 0031-899X 10.1103/PhysRev.100.58
Effects of in-plane magnetic fields on the electronic cyclotron effective mass and Landé factor in GaAs-(Ga,Al)As quantum wells
The dependence of the electron Landé g-factor on carrier confinement in quantum wells recently gained both experimental and theoretical interest. The g factor of electrons in GaAs-(Ga,Al)As quantum wells is of special interest, as it changes its sign at a certain value of the well width. In the present work, the effects of an in-plane magnetic field on the cyclotron effective mass and on the Landé g^-factor in single GaAs-(Ga,Al)As quantum wells are studied. Theoretical calculations are performed in the framework of the effective-mass and non-parabolic-band approximations. The Ogg-McCombe Hamiltonian is used for the conduction-band electrons in the semiconductor heterostructure, and the Landé g^-factor theoretically evaluated is found in good agrement with available experimental measurements.858861Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
Effects of crossed electric and magnetic fields on the electronic and excitonic states in bulk GaAs and GaAs/Ga1-xAlxAs quantum wells
The variational procedure in the effective-mass and parabolic-band approximations is used in order to investigate the effects of crossed electric and in-plane magnetic fields on the electronic and exciton properties in semiconductor heterostructures. Calculations are performed for bulk GaAs and GaAs/Ga1-xAlxAs quantum wells, for applied magnetic fields parallel to the layers and electric fields in the growth direction, and it is shown that the combined effects on the heterostructure properties of the applied crossed electric and magnetic fields and the direct coupling between the center-of-mass and internal exciton motions may be dealt with via a simple parameter representing the spatial distance between the centers of the electron and hole magnetic parabolas. Exciton properties are analyzed by using a simple hydrogenlike envelope excitonic wave function and present theoretical results are found in fair agreement with available experimental measurements on the diamagnetic shift of the photoluminescence peak position of GaAs/Ga1-xAlxAs quantum wells under in-plane magnetic fields.75
Fractional-dimensional approach for excitons in GaAs-Ga1-xAlxAs quantum wells
The fractional-dimensional approach, in which the real semiconductor heterostructure system is substituted by an effective isotropic environment with a fractional dimension, was used in the study of ground and excited excitonic states in GaAs-(Ga,Al)As quantum wells. The fractional-dimensional formalism was extended to include the possibility of dealing with excited states and varying effective masses across the heterostructure interfaces, with the fractional dimension chosen in a systematic way. Theoretical fractional-dimensional results for ground-state Is-like exciton states in GaAs-(Ga,Al)As quantum wells were shown to be in good agreement with previous detailed calculations and recent experimental measurements. Moreover, theoretical results within the fractional-dimensional scheme were found in excellent agreement with the recent experimental high-resolution spectroscopic studies on excited-exciton states of shallow GaAs-Ga1-xAlxAs quantum wells with Al concentration in the range of 1-4.5 %.5874072407
Shallow-impurity states of semiconductor Fibonacci superlattices
A theoretical study of shallow-donor states of GaAs-(Ga,Al)As semiconducting quasiperiodic Fibonacci superlattices is presented. The impurity states are calculated using different variational methods within the parabolic-band model and effective-mass approximation. We deal with periodic superlattices having a Fibonacci sequence of GaAs and (Ga,Al)As layers as unit cells, the size of these sequences being of increasing order. The binding energy and effective mass associated with the Is-like shallow-impurity states of these systems show a dependence on the donor position in the superlattices, which reflects the self-similarity and quasiperiodicity of the Fibonacci superlattices. We present a detailed explanation of the Fibonacci structures of the binding energies as a function of the impurity position in the superlattice and introduce a one-dimensional effective Coulomb potential that should be useful in the study of shallow-impurity states of Fibonacci superlattices, and other quasiperiodic semiconducting heterostructures, under the action of external electric and/or magnetic fields.57116573657
- …