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A theoretical study of the effects of in-plane magnetic fields on the Landé g� factor associated to conduction
electrons in GaAs-�Ga,Al�As Fibonacci superlattices is presented. We have used the Ogg-McCombe effective
Hamiltonian, which includes nonparabolic and anisotropy effects, in order to describe the electron states in the
Fibonacci heterostructure. We have expanded the corresponding electron envelope wave functions in terms of
harmonic-oscillator wave functions, and obtained the Landé g� factor for magnetic fields related by even
powers of the golden mean �= �1+�5� /2. Theoretical results for GaAs-�Ga,Al�As Fibonacci superlattices,
under magnetic-field values scaled by �2n, clearly exhibit a self-similar �for even n� or anti-self-similar �for odd
n� behavior for the Landé g� factors, as appropriate.
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The physical properties of quasiperiodic semiconductor
superlattices have been extensively studied in the past few
decades, not only because they represent an access-
ible and intermediate case between periodic and disordered
solids, but also for their potential applications in the fabrica-
tion of electronic and optoelectronic devices. In particular,
since the pioneering work of Merlin and co-workers,1 a
considerable number of both experimental and theoreti-
cal work has been devoted to the understanding of the
unique nature of the electronic properties associated with
GaAs-�Ga,Al�As Fibonacci superlattices �FSLs�.2–5 Maan
and co-workers2–4 studied the effects of a magnetic field ap-
plied parallel to the layers on the electronic and optical prop-
erties of GaAs-�Ga,Al�As Fibonacci superlattices �FSLs�
and, by measuring the magneto-optical spectra of this sys-
tem, Toet et al.3,4 suggested that the spectra exhibit self-
similarity at field values scaled by �2, where �= �1+�5� /2 is
the golden mean.

More recently, the increasing potential applications of
semiconductor nanostructures in a variety of semiconductor
devices based on spin-electronic transport have attracted the
attention of scientists, as the possibility of active manipula-
tion of the spin degree of freedom in solid-state systems6–9 is
one of the important aspects in the development of quantum
information processing and spintronics. In that respect, the
dependence of the electron Landé g factor on carrier quan-
tum confinement in semiconductor nanostructures has been
the subject of a number of both experimental and theo-
retical10–18 studies.

Following these studies, the aim of the present work is to
investigate the effects of in-plane magnetic fields on the
Landé g� factor associated to conduction electrons in
GaAs-�Ga,Al�As FSLs. In the present theoretical calcula-
tions, these effects are taken into account by using the Ogg-
McCombe effective Hamiltonian to describe the electron
states in the Fibonacci heterostructure.

We have focused on the quasiperiodic FSL studied by
Maan et al.,2–5 i.e., a MBE-grown system consisting of alter-
nating Ga1−xAlxAs layers �elementary block a� and GaAs

layers �elementary block b�, which follows the Fibonacci se-
quence �n defined2 as

�n = ��n−2��n−1 if n is odd,

�n−1��n−2 if n is even,
�1�

where �1=a and �2=b. An important result, which is a con-
sequence of the generation procedure described above, is the
self-similarity of the resulting structure: the substitutions
�ab→a ,abb→b� and �b→a ,ab→b� transform �n into
�n−2 and �n into the reverse of �n−1, respectively.2–5 On the
other hand, one may obtain a modified generation �̄n by
removing the first and last elementary blocks of a given gen-
eration �n. The resulting �̄n contains an inversion center.5

Also, for a FSL under an in-plane magnetic field and within
the parabolic-band model, it is well known2–5 that scaling of
�2n in the magnetic field, and therefore of 1

�n in the length
�cyclotron radius�, with integer n, leads to either self-
similarity or anti-self-similarity in the energy-level structure,
interband and intraband transition strengths and absorption
coefficients, and to self-similarity in the density of states.
The transformations �ab→a ,abb→b� and �b→a ,ab→b�
correspond to scaling with n=2 and n=1, respectively. As
discussed by Wang and Maan,2 the relation

db

da
=� �da and db

are the thicknesses of barrier a and well b layers, respec-
tively� is a necessary condition to study similarity properties
in a FSL under in-plane magnetic fields. We restrict the
present theoretical analysis to the cases of scaling of �2n in
the magnetic field, with n=1 and n=2.

In the effective-mass approximation and taking into ac-
count nonparabolicity effects for the conduction-band elec-
trons, the Ogg-McCombe effective Hamiltonian19–23 for an
electron in a GaAs-Ga1−xAlxAs FSL grown along the y axis
and under an in-plane B=Bẑ magnetic field �we choose the

gauge Â= �−yB ,0 ,0� for the magnetic vector potential� is
given by
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+ a5B
�̂ · K̂,K̂z� + a6B�̂zK̂z
2 + ���̂ · �̂� + V�y� , �2�

where K̂= k̂+ e
�cÂ, k̂= 1

i
�
�r , the �̂i are the Pauli matrices’

components of �̂, the operator �̂ has components �̂x

= K̂yK̂xK̂y − K̂zK̂xK̂z and cyclic permutations, the m�y� are the
growth-direction position-dependent conduction-electron ef-
fective mass,24 whereas the g�y� are the Landé g factors10 of
the GaAs wells �g�y�=gw=−0.44� and Ga1−xAlxAs barriers
�g�y�=gb=0.54, for x=0.35�. The values of ai, i=1,2 , . . . ,6,
are obtained via a fitting with GaAs magnetospectroscopic
measurements,22 and � is a constant associated with the cu-
bic Dresselhaus spin-orbit term25 and associated to the GaAs

lack of inversion symmetry, 
â , b̂� is the anticommutator be-

tween the â and b̂ operators, and V�y� is the FSL confining
potential �for electrons, we take the finite potential barrier as
60% of the Ga1−xAlxAs and GaAs band-gap offset�. Here we
mention that the Hamiltonian �2� is reduced to the parabolic
one2–5 for �=0 and ai=0, i=1,2 , . . . ,6.

As Ĥ does not explicitly depend on x and z, kx and kz are

good quantum numbers, and the eigenfunctions of Ĥ may be
chosen as ��r�=	�y�ei�kxx+kzz� /�LxLz, where ��r� and the
	�y� are two-component wave functions, and Lx and Lz are
the sample lengths along the x and z directions, respectively.
One should notice that the presence of the FSL layer-
confining potential together with the effects of the applied
in-plane magnetic field lead to a dependence of the eigenval-
ues of �2� on the cyclotron orbit-center position y0=kxlB

2 ,
where lB=� �c

eB is the cyclotron radius �or magnetic length�.
Moreover, at low temperatures, one may take kz=0, as only
the lowest energy levels are occupied. By neglecting the off-
diagonal terms23 in the Schrödinger equation, the ↑ spin-up
and ↓ spin-down states become uncoupled. The Schrödinger
equation may then be written as

Ĥms
�n,y0,ms

�y − y0� = En�y0,ms��n,y0,ms
�y − y0� , �3�

where the Ĥms
, with ms= ±1/2, are the diagonal components

of �2� for kz=0, and n is the Landau magnetic-subband index.
The above equation, for each ms projection �↑ or ↓� of the
electron spin along the magnetic-field direction, may be
readily solved by expanding the wave function in terms of
the harmonic oscillator wave functions, which are the natural
solutions of Eq. �3� in the parabolic approximation and ab-
sence of the confining potential.

The expression one uses to define the g
�

�n� effective Landé
factor in the in-plane direction �perpendicular to the
y-growth axis� associated to the En�y0 ,ms ,B� Landau levels
reads

g�
�n��y0,B� =

En�y0,↑,B� − En�y0,↓,B�
�BB

. �4�

Notice that Eq. �4� is an adequate way of defining the g
�

�n�

effective Landé factor due to the fact that the ↑ and ↓ spin
states, in the present calculations, are decoupled. Moreover,
as the GaAs-Ga1−xAlxAs FSL is grown along the y axis, it is
clear that the effective g

�

�n� factor will, in principle, depend
on the y0 orbit-center position and on the applied magnetic
field. In the parabolic approximation ��=0 and ai=0, i
=1,2 , . . . ,6�, the matrix elements of the Zeeman contribu-
tion �second term in �2�� depend on y0 due to the spatial
dependence of g �which is different for wells and barriers�,
and are different for electron states with different spin pro-
jections along the applied magnetic field. Therefore, one may
also expect an orbit-center position dependence on the g

�

�n�

effective Landé factor even in the parabolic case.
Here we comment that the well width db and barrier width

da were chosen2 as db=1.69 nm and da=1.12 nm. Note that,
with this choice for da and db, one has

db

da
��, and anti-self-

similarity or self-similarity in the length scale for two differ-
ent magnetic fields related by �2 or �4, respectively, is ex-
pected to be guaranteed, according to previous works.2–5 In
this sense, we have chosen B�=20 T, B�=B� /�2=7.64 T,
and B=B� /�4=2.92 T. The corresponding magnetic lengths
are related as lB=�lB�=�2lB� and the transformations �ab
→a ,abb→b� and �b→a ,ab→b� correspond to scaling of
�2 and � in the length, respectively.

In Fig. 1 we display, for the ground-state Landau mag-
netic levels, the g� effective Landé factors as functions of
the orbit-center position, for the three values of the scaled
magnetic fields. Theoretical calculations were performed in
the parabolic approximation �see Fig. 1�a��, and by taking
into account the effects of nonparabolicity �cf. Fig. 1�b��.
The magnetic field dependence of the g� factor is due both
to field effects on the ↑ and ↓ energy band structure as well
as to magnetic field-confining effects on the spin wave func-
tions. On the other hand, the orbit-center position depen-
dence on the g� factor is more pronounced as the magnetic
field is increased. Of course, the localization region of the
ground-electron state is proportional to the magnetic length
lB, which is large for small values of the in-plane magnetic
field. Therefore, no thin details of the confining potential are
seen by the conduction electron in this case, and a weak
orbit-center position dependence of the Landé g� factor is
obtained. Notice �cf. Figs. 1�a� and 1�b�� the importance of
nonparabolicity effects, a result already demonstrated in the
case of GaAs-�Ga,Al�As semiconductor quantum wells.23

Moreover, one clearly sees from Fig. 1�b� that, by increasing
the strength of the applied magnetic field, one may change
the sign of the Landé g� factor, a property that may prove
useful in future applications in spintronic devices. The Landé
g� factor, as a function of the orbit-center position, also
manifests a self-similar or anti-self-similar behavior for
magnetic-field values scaled by even powers of �. Theoreti-
cal results are summarized in Fig. 2, where we have plotted
the numerical results obtained considering the nonparabolic-
ity effects in the Hamiltonian �2� and displayed in Fig. 1�b�,
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but appropriately scaled and shifted.26 Notice that, as ex-
pected, the self-similar and anti-self-similar properties for g�

are beautifully displayed �and that the scaled g� results for
20 T and 2.92 T are essentially identical in the scale used in
Fig. 2�.

Summing up, we have performed a theoretical study of
the effects of an in-plane magnetic field on the effective
Landé g� factor in GaAs-�Ga,Al�As FSLs. Theoretical re-
sults were presented for magnetic fields related by even pow-
ers of the golden mean �= 1+�5

2 . For magnetic-field values

scaled by �4 or by �2, one finds that the effective Landé g�

factor as a function of the orbit-center position, properly
scaled and shifted, manifests a self-similar or anti-self-
similar behavior, respectively. To our knowledge, up to now
there have been no experimental results on the effective
Landé g� factor in GaAs-�Ga,Al�As quasiperiodic FSL. We
do hope, however, that the theoretical results presented here
may motivate such experiments and contribute to their un-
derstanding. Moreover, the present work clearly indicates
that, by increasing the strength of the applied magnetic field,
one may change the sign of the FSL Landé g� factor, which
raises the possibility of manipulating spin-polarized currents
in semiconductor systems, a property that may have possible
applications in the area of spintronics devices.
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