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Effects of In-Plane Magnetic Fields on the Electronic Cyclotron Effective Mass and Landé Factor in
GaAs-(Ga,Al)As Quantum Wells
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The dependence of the electron Landé g-factor on carrier confinement in quantum wells recently gained both
experimental and theoretical interest. The g factor of electrons in GaAs-(Ga,Al)As quantum wells is of special
interest, as it changes its sign at a certain value of the well width. In the present work, the effects of an in-plane
magnetic field on the cyclotron effective mass and on the Landé g⊥-factor in single GaAs-(Ga,Al)As quantum
wells are studied. Theoretical calculations are performed in the framework of the effective-mass and non-
parabolic-band approximations. The Ogg-McCombe Hamiltonian is used for the conduction-band electrons in
the semiconductor heterostructure, and the Landé g⊥-factor theoretically evaluated is found in good agrement
with available experimental measurements.
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Semiconductor heterostructures, such as quantum wells
(QWs), quantum-well wires (QWWs), quantum dots (QDs),
and superlattices (SLs) have been widely studied in the past
three decades. Such interest was motivated by possible elec-
tronic and opto-electronic applications and by the need to
understand fundamental properties of matter at nanoscale di-
mensions. In that respect, the transport of spin-polarized elec-
trons by using ferromagnetic probe tips in a low-temperature
scanning tunnelling microscope opened up the possibility of
investigating magnetic systems at spatial resolutions in the
angstrom scale [1]. Of course, the ability to manipulate sin-
gle spins [2] is one of the important aspects in the devel-
opment of quantum information processing and spintronics.
In particular, the dependence of the electronic effective mass
and electron Landé g-factor on carrier quantum confinement
in QWs and QDs has recently gained the community atten-
tion both experimentally as well as theoretically [3–8]. The
g-factor of electrons in GaAs-Ga1−xAlxAs QWs is of spe-
cial interest, as it changes its sign at certain values of the
well width. In this study we are particularly interested in the

experimental work by Hannak et al [4] who determined the
electron Landé factor as a function of the GaAs-Ga1−xAlxAs
well width from 1 to 20 nm under in-plane magnetic fields
by the technique of spin quantum beats. We are also con-
cerned with the experimental data by Le Jeune et al [5] who
studied the anisotropy of the electron Landé factor in GaAs
QWs, and by Malinowski and Harley [6] who investigated
the influence of quantum confinement and built-in strain on
conduction-electron g factors in GaAs/Al0.35Ga0.65As QWs
and strained-layer In0.11Ga0.89As/GaAs QWs, for QW widths
between 3 and 20 nm. Here, we are concerned with the effects
of in-plane magnetic fields on the cyclotron effective mass and
Landé g⊥-factor in GaAs-Ga1−xAlxAs semiconductor QWs,
within the effective-mass and non-parabolic-band approxima-
tions [9, 10], with theoretical results compared with available
experimental measurements. Details of the present work will
be presented elsewhere [11].

The effective Hamiltonian for the conduction-band elec-
trons in a GaAs-Ga1−xAlxAs QW, grown along the y axis,
under an in-plane B = Bẑ magnetic field is given by
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where K̂ = k̂+ e
~c Â, k̂ =−i∇; Â = (−yB,0,0) is the magnetic

vector potential, σ̂ = (σ̂x, σ̂y, σ̂z) are the Pauli matrices, m(y)
and g(y) are the growth-direction position-dependent (with
bulk values of GaAs or Ga1−xAlxAs) conduction-electron ef-
fective mass and Landé g-factor, respectively [12], µB is the
Bohr magneton, lB is the Landau length, a1, a2, a3, a4, a5 and
a6 are constants appropriate to bulk GaAs [13],

{
â, b̂

}
is the

anticommutator between the â and b̂ operators, and V (y) is

the confining potential, taken as 60 % of the Ga1−xAlxAs and
GaAs band-gap offset [14]. The term proportional to Γ in (1)
is the cubic Dresselhaus spin-orbit term [15].

The eigenfunction of (1) may be chosen as
(
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)
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where n is the Landau magnetic-subband index, and y0 = kxl2
B
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FIG. 1: The ten lowest magnetic levels as functions of the orbit-
center position in GaAs-Ga0.65Al0.35As QWs of width L, under in-
plane magnetic fields, for L = 50 Å and B = 4 T (a), L = 500 Å
and B = 4 T (b), L = 50 Å and B = 20 T (c), and L = 500 Å and
B = 20 T (d), respectively. The spin up (↑) and spin down (↓) states
are represented by solid and dashed lines, respectively, although they
are essentially undistinguishable for the scale used in the figure. The
potential profile is shown schematically.

is the cyclotron orbit-center position. Due to the low popu-
lation of the conduction states at low temperatures, one may
consider only the kz = 0 contribution to the energy spectra,
and by neglecting the off-diagonal terms in (1), the spin up
and spin down states become uncoupled. We have denoted as
Ĥms the diagonal terms of (1) for a given ms projection (↑ or
↓) of the electron spin along the magnetic-field direction, and
expanded the corresponding wave functions in terms of the
|m,y0〉 harmonic-oscillator wave functions [11], i. e.,

ψn,y0,ms(y− y0) = ∑
m

cnm(y0,ms) |m,y0〉. (3)

After some algebraic manipulations, one straightforwardly
obtains

∑
m

(
H( j,m)

ms −En(y0,ms)δ j,m

)
cn,m(y0,ms) = 0, (4)

and, by diagonalizing Ĥms , the eigenvalues En(y0,ms). We
would like to stress that the terms of order superior to the par-
abolic (K̂2) in (1) are quite often taken into account via per-
turbation theory [16], and in the present work they are exactly
considered within the diagonal approach.

Here, the results refer to GaAs-Ga0.65Al0.35As QWs under
in-plane magnetic fields, as the experimental data from Han-
nak et al [4], Le Jeune et al [5], and Malinowski et al [6]
on the electronic Landé g⊥-factor are for GaAs-Ga1−xAlxAs
QWs with Al proportion corresponding to x = 0.35. In Figure
1 we display the ten lowest Landau levels as functions of the
orbit-center position in GaAs-Ga0.65Al0.35As QWs under an
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FIG. 2: The cyclotron effective masses as funtions of the orbit-
center position in GaAs-Ga0.65Al0.35As QWs under in-plane mag-
netic fields. Figures (a), (b), (c) and (d) were obtained for L = 50
Å and B = 4 T , L = 500 Å and B = 4 T , L = 50 Å and B = 20 T ,
and L = 500 Å and B = 20 T , respectively. Spin-up and spin-down
cases are represented by solid and dashed lines, respectively, al-
though they are undistinguishable in the figure. The potential profile
is also shown schematically.
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FIG. 3: g⊥ - factors, corresponding to the nth Landau levels, as func-
tions of the applied in-plane magnetic field (a), of the orbit-center
position (b), and of the QW width (c) in GaAs-Ga0.65Al0.35As QWs.
Squares, circles and triangles in (c) are the experimental results from
Hannak et al [4], Le Jeune et al [5], and Malinowski et al [6], respec-
tively.
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in-plane magnetic field of B = 4 T and B = 20 T , and for the
QW width of L = 50 Å and L = 500 Å. The orbit-center po-
sition is in units of the well width L, and energies in units of
the cyclotron energy ~ωc = ~eB

mwc , where mw is the conduction-
electron effective mass in the well material. Solid and dashed
lines are associated with the Landau electron subbands with
spin projections in the parallel (↑) and antiparallel (↓) direc-
tions of the in-plane applied magnetic field along the +z axis,
respectively. Note that the ↑ and ↓ electron subbands are es-
sentially undistinguishable in the scale used in Figure 1. Also,
as one may notice from Fig. 1 (a), for B = 4 T in an L = 50 Å
GaAs-Ga0.65Al0.35As QW, and in the range of y0 orbit center
considered, the lowest Landau energy subbands are essentially
flat as a function of the orbit-center position. This behavior is
to be expected for small values of the applied magnetic field,
as the QW width of 50 Å is small compared with the lB = 128
Å Landau length. Therefore, in this case (L << lB), the ef-
fect of the magnetic field is weak and the electronic Landau
energy-level structure is essentially dominated by the barrier
confining potential. As the GaAs-Ga0.65Al0.35As QW width
is increased beyond the lB Landau length, the orbit-center po-
sition dependence of the electron Landau subbands becomes
dispersive [cf. Fig. 1 (b)], with a minimum at the center of the
well, i.e., y0 = 0. At low temperatures, therefore, electrons
would tend to populate energy levels around y0 = 0. Notice
that, at B = 20T , the orbit-center dependence of the electron
Landau levels is more dramatic than for B = 4 T [cf. Figs. 1
(c) and (d)].

As it is well known, the technique of cyclotron resonance
is a powerful tool in the study of the effective mass and trans-
port properties of electrons in semiconductor heterostructures.
An in-plane magnetic field may modify the cyclotron effec-
tive mass due to the distortion of the Fermi contour by the
applied field. In that respect, the inclusion of the band non-
parabolicity is crucial in order to obtain a proper quantitative
agreement with experimental measurements. For a given pro-
jection ms of the electron spin, the mc cyclotron effective mass
associated with the n-th Landau magnetic subband is defined
by En+1(y0,ms)−En(y0,ms) = ~ eB

mc
. The cyclotron effective

mass (for n = 0 in the above equation) is shown in Figure 2 as a
function of the orbit-center position in GaAs-Ga0.65Al0.35As
QWs of width L = 50 Å, and L = 500 Å, under in-plane
magnetic fields of B = 4 T and 20 T . In Figs. 2 (a) and (c),
the orbit-center position dependence of the cyclotron effective
mass is flat, which is due to the fact that the Landau energy
levels are essentially independent of the orbit-center position
[see Figs. 1 (a) and (c)]. Moreover, the cyclotron effective
mass is much smaller [cf. Figs. 2 (a) and (c)] than the bulk
GaAs electron effective mass. One may argue that this is due
to the large difference between the energies corresponding to
the ground and first-excited Landau levels. For L À lB, the
cyclotron effective mass increases and tends to the bulk GaAs
electron effective mass for the orbit-center position at the cen-
ter of the well, as one may see from Figs. 2 (b) and (d). As
the magnetic field increases, the effect of the barrier confin-
ing potential becomes less important than the magnetic-field
confining effect, the cyclotron effective mass increases, and
for very large magnetic fields (L À lB), the difference be-

tween the n = 1 and n = 0 Landau levels is essentially given
by ~ωc = ~eB

mwc , and mc → mw.

With respect to the g⊥-factor, one may define ∆En =
En(y0,↑,B)− En(y0,↓,B) = g(n)

⊥ µBB, where g(n)
⊥ is the ef-

fective Landé factor in the in-plane direction (perpendicular
to the y-growth axis) associated to the En(y0,ms,B) Landau
level, and the explicit dependence of the Landau levels on
the applied in-plane magnetic field is stressed. Notice the
above equation is an adequate way of defining the effective
g(n)
⊥ -Landé factor associated with the n-th Landau magnetic

subband and to the two lowest Zeeman ↑ and ↓ electronic sub-
levels. Moreover, it is clear that the effective g(n)

⊥ -factor of the
the n-th Landau magnetic subband will, in principle, depend
on both the orbit-center position and on the applied in-plane
magnetic field. Figure 3 shows the g⊥ - factor associated to
↑ and ↓ spin states in GaAs-Ga0.65Al0.35As QWs. In Fig. 3
(a) we display the magnetic-field dependence of the g⊥ - fac-
tor corresponding to n = 0 Landau magnetic levels for various
values of the QW width, and for the orbit-center position at the
center of the QW. Results were obtained for magnetic fields
from 4T to 20T . In these range of magnetic-field values, it is
apparent that the g⊥ - factor depends weakly on the magnetic
field. The field-dependence on the g⊥ - factor is due both by
the modification of the energy band-structure as well as by the
redistribution of the wave function by the magnetic field. The
orbit-center position dependence of the g⊥ - factor associated
to the n = 0 Landau magnetic level is shown in Fig. 3 (b)
for B = 4T and for various values of the well width. As the
electron-Landau levels are essentially flat for B = 4T , L = 50
Å and L = 100 Å, for these values of the QW width, the g⊥
- factor does not appreciably depend on the orbit-center posi-
tion. As the QW width increases beyond lB, the orbit-center
position dependence of the g⊥ - factor becomes appreciable.
Finally, we show in Fig. 3 (c) the n = 0, n = 1 and n = 2 Landé
g⊥ - factors as functions of the QW width for B = 4 T and for
the orbit-center position at the center of the well (solid lines).
For n = 0, the sign of the electron-g factors in the GaAs well
and in the Ga0.65Al0.35As barrier are opposite. For the orbit-
center position at the center of the QW and for short values
of the QW-width (L ¿ lB), the electron wavefunctions easily
penetrate the Ga0.65Al0.35As barriers, and the g⊥ - factors are
positive. On the other hand, for large values of the QW widths
(L À lB), the g⊥ - factors are negative due essentially to the
localization of the electron wavefunctions in the well mater-
ial. Therefore, there must be a well thickness for which the
g⊥ - factor is zero, which is clearly observed in Fig. 3 (c).
The experimental results from Hannak et al [4], Le Jeune et
al [5], and Malinowski et al [6] for the n = 0 Landau mag-
netic levels are also represented by squares, circles and trian-
gles, respectively. One may notice that the present theoretical
calculations are in excellent agreement with the experimental
measurements.

In conclusion, we have studied the effects of an in-plane
magnetic field on the cyclotron effective mass and Landé g⊥-
factor in single GaAs-(Ga,Al)As QWs. Present theoretical
results where carried out in the framework of the effective-
mass approximation, with the non-parabolic conduction-band
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effects taken into account via the Ogg-McCombe effective
Hamiltonian for the conduction electrons. The QW-width
dependence g⊥ - factor reveals, as expected, a change in its
sign, a fact which may be understood in terms of the electron
wave function localization. Present theoretical calculations
for the Landé g⊥-factor in single GaAs-(Ga,Al)As quantum
wells were found in excellent agreement with the experimen-
tal measurements reported by Hannak et al [4], Le Jeune et al
[5], and Malinowski et al [6].
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