286 research outputs found

    The Ursinus Weekly, March 9, 1964

    Get PDF
    Junior Prom and Agency concert highlight coming weekend • Curtain Club chooses cast; Meridy Murphy will direct Remarkable Mr. Pennypacker • Kaffee Klatsch topic politics • Sig Nu and ZX win Songfest • Photo contest • Wedgwood, controversial historian, author, here Wednesday evening • Campus Chest plans underway • Red Cross seeking qualified swimmers • 1,100 applications filed at UC for Fall admissions • Jean Hunter, Howard Smith elected Ruby co-editors • March placement schedule posted • Ursinus to raise tuition rate $200 effective Sept. 1 • Review: Mr. Lincoln on civil rights • Navy OCS team will visit campus next week • Letters to the editor • Fall of man topic of Bible Study • Genevieve Blatt: Our role in politics • Dateline: Stockholm • Greek gleanings • Modern tri-mesters used in 1880 here • Girls BB falls to ES, 46-36; JV team continues unbeaten • West Chester wins intercollegiates • Mermaids lose in two close meets • Wrestling: Win last match • Hofmann receives sportswriter\u27s award • MAC tournamenthttps://digitalcommons.ursinus.edu/weekly/1267/thumbnail.jp

    Investigating the Stratigraphy of an Alluvial Aquifer Using Crosswell Seismic Traveltime Tomography

    Get PDF
    In this study, we investigate the use of crosswell P-wave seismic tomography to obtain spatially extensive information about subsurface sedimentary architecture and heterogeneity in alluvial aquifers. Our field site was a research wellfield in an unconfined aquifer near Boise, Idaho. The aquifer consists of a ~ 20-m-thick sequence of alluvial cobble- and-sand deposits, which have been subdivided into five stratigraphic units based on neutron porosity logs, grainsize analysis, and radar reflection data. We collected crosswell and borehole-to-surface seismic data in wells 17.1 m apart. We carefully considered the impact of well deviation, data quality control, and the choice of inversion parameters. Our linearized inverse routine had a curved-ray forward model and used different grids for forward modeling and inversion. An analysis of the model covariance and resolution matrices showed that the velocity models had an uncertainty of \u3c10 m\u3e/s, a vertical resolution of ~ 1 m, and a horizontal resolution of ~ 5 m. The velocity in the saturated zone varied between 2100 m/s and 2700 m/s. Inclusion of the borehole-to-surface data eliminated the Xshaped pattern that is a common artifact in crosswell tomography, and the increased angular coverage also improved the accuracy of the model near the top of the tomogram. The final velocity model is consistent with previous stratigraphic analyses of the site, although the locations of some of the unit boundaries differ by as much as 2 m in places. The results of this study demonstrate that seismic tomography can be used to image the sedimentary architecture of unconsolidated alluvial aquifers, even when the lithologic contrasts between units are subtle

    Limits to scale invariance in alluvial rivers

    Get PDF
    Assumptions about fluvial processes and process–form relations are made in general models and in many site‐specific applications. Many standard assumptions about reach‐scale flow resistance, bed‐material entrainment thresholds and transport rates, and downstream hydraulic geometry involve one or other of two types of scale invariance: a parameter (e.g. critical Shields number) has the same value in all rivers, or doubling one variable causes a fixed proportional change in another variable in all circumstances (e.g. power‐law hydraulic geometry). However, rivers vary greatly in size, gradient, and bed material, and many geomorphologists regard particular types of river as distinctive. This review examines the tension between universal scaling assumptions and perceived distinctions between different types of river. It identifies limits to scale invariance and departures from simple scaling, and illustrates them using large data sets spanning a wide range of conditions. Scaling considerations and data analysis support the commonly made distinction between coarse‐bed and fine‐bed reaches, whose different transport regimes can be traced to the different settling‐velocity scalings for coarse and fine grains. They also help identify two end‐member sub‐types: steep shallow coarse‐bed ‘torrents’ with distinctive flow‐resistance scaling and increased entrainment threshold, and very large, low‐gradient ‘mega rivers’ with predominantly suspended load, subdued secondary circulation, and extensive backwater conditions

    Long-term TNT and DNT contamination: 1-D modeling of natural attenuation in the vadose zone: case study, Portugal

    Get PDF
    The vadose zone of a trinitrotoluene (TNT) and dinitrotoluene (DNT) contaminated site was investigated to assess the mobility of those explosives under natural conditions. Located in the left margin of the River Tejo Basin, Portugal, the site is located on unconsolidated sediments. Wastewaters associated with the 50-year explosives production were disposed in excavated ponds, from where water would infiltrate and pollute the unsaturated and saturated parts of the local aquifers. Two boreholes were drilled to 9 m depth in such a former waste pond to investigate the contaminant's fate in the vadose zone. Sediment samples were taken every 1-2 m for analysis of the polynitroaromatics (p-NACs) and organic volatile compounds, pH, organic carbon content, cation exchange capacity and grain size analysis. The main contaminant was TNT representing >70 % of the total p-NACs concentration that peaked approximately 7 mg/kg in one borehole, even if the median in both boreholes was of similar to 1 mg/kg. DNT was 4-30 % of the total p-NACs and nitrotoluene (NT), up to 5 %. No other (volatile) organic compound was detected. The predominance of TNT as the main contaminant implies that any natural mass reduction has been inefficient to clean the site. Several 1-D model simulations of p-NACs cleaning of the vadose zone under natural conditions indicated that the most probable scenario of combined advection and partitioning will only remove TNT after 10's of years, whereas DNT and NT will hardly be removed. Such low concentrations and long times for the p-NACs removal, suggest that by now those compounds have been washed-out to a level below standard limits

    An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope

    Get PDF
    The Surface Water and Ocean Topography (SWOT) satellite mission planned for launch in 2020 will map river elevations and inundated area globally for rivers >100 m wide. In advance of this launch, we here evaluated the possibility of estimating discharge in ungauged rivers using synthetic, daily ‘‘remote sensing’’ measurements derived from hydraulic models corrupted with minimal observational errors. Five discharge algorithms were evaluated, as well as the median of the five, for 19 rivers spanning a range of hydraulic and geomorphic conditions. Reliance upon a priori information, and thus applicability to truly ungauged reaches, varied among algorithms: one algorithm employed only global limits on velocity and depth, while the other algorithms relied on globally available prior estimates of discharge. We found at least one algorithm able to estimate instantaneous discharge to within 35% relative root-mean-squared error (RRMSE) on 14/16 nonbraided rivers despite out-of-bank flows, multichannel planforms, and backwater effects. Moreover, we found RRMSE was often dominated by bias; the median standard deviation of relative residuals across the 16 nonbraided rivers was only 12.5%. SWOT discharge algorithm progress is therefore encouraging, yet future efforts should consider incorporating ancillary data or multialgorithm synergy to improve results

    Suicide risk in schizophrenia: learning from the past to change the future

    Get PDF
    Suicide is a major cause of death among patients with schizophrenia. Research indicates that at least 5–13% of schizophrenic patients die by suicide, and it is likely that the higher end of range is the most accurate estimate. There is almost total agreement that the schizophrenic patient who is more likely to commit suicide is young, male, white and never married, with good premorbid function, post-psychotic depression and a history of substance abuse and suicide attempts. Hopelessness, social isolation, hospitalization, deteriorating health after a high level of premorbid functioning, recent loss or rejection, limited external support, and family stress or instability are risk factors for suicide in patients with schizophrenia. Suicidal schizophrenics usually fear further mental deterioration, and they experience either excessive treatment dependence or loss of faith in treatment. Awareness of illness has been reported as a major issue among suicidal schizophrenic patients, yet some researchers argue that insight into the illness does not increase suicide risk. Protective factors play also an important role in assessing suicide risk and should also be carefully evaluated. The neurobiological perspective offers a new approach for understanding self-destructive behavior among patients with schizophrenia and may improve the accuracy of screening schizophrenics for suicide. Although, there is general consensus on the risk factors, accurate knowledge as well as early recognition of patients at risk is still lacking in everyday clinical practice. Better knowledge may help clinicians and caretakers to implement preventive measures. This review paper is the results of a joint effort between researchers in the field of suicide in schizophrenia. Each expert provided a brief essay on one specific aspect of the problem. This is the first attempt to present a consensus report as well as the development of a set of guidelines for reducing suicide risk among schizophenia patients

    Distribution, blood transport, and degradation of antidiuretic hormone in man.

    No full text
    corecore