78 research outputs found

    Synergistic effect of phosphodiesterase 4 inhibitor and serum on migration of endotoxin-stimulated macrophages.

    Get PDF
    Macrophage migration is an essential step in host defense against infection and wound healing. Elevation of cAMP by inhibiting phosphodiesterase 4 (PDE4), enzymes that specifically degrade cAMP, is known to suppress various inflammatory responses in activated macrophages, but the role of PDE4 in macrophage migration is poorly understood. Here we show that the migration of Raw 264.7 macrophages stimulated with LPS was markedly and dose-dependently induced by the PDE4 inhibitor rolipram as assessed by scratch wound healing assay. Additionally, this response required the involvement of serum in the culture medium as serum starvation abrogated the effect. Further analysis revealed that rolipram and serum exhibited synergistic effect on the migration, and the influence of serum was independent of PDE4 mRNA expression in LPS-stimulated macrophages. Moreover, the enhanced migration by rolipram was mediated by activating cAMP/exchange proteins directly activated by cAMP (Epac) signaling, presumably via interaction with LPS/TLR4 signaling with the participation of unknown serum components. These results suggest that PDE4 inhibitors, together with serum components, may serve as positive regulators of macrophage recruitment for more efficient pathogen clearance and wound repair

    Alpha-Tomatine Induces Apoptosis and Inhibits Nuclear Factor-Kappa B Activation on Human Prostatic Adenocarcinoma PC-3 Cells

    Get PDF
    BACKGROUND: Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of highly aggressive human prostate cancer PC-3 cells with α-tomatine resulted in a concentration-dependent inhibition of cell growth with a half-maximal efficient concentration (EC(50)) value of 1.67±0.3 µM. It is also less cytotoxic to normal human liver WRL-68 cells and normal human prostate RWPE-1 cells. Assessment of real-time growth kinetics by cell impedance-based Real-Time Cell Analyzer (RTCA) showed that α-tomatine exhibited its cytotoxic effects against PC-3 cells as early as an hour after treatment. The inhibitory effect of α-tomatine on PC-3 cancer cell growth was mainly due to induction of apoptosis as evidenced by positive Annexin V staining and decreased in mitochondrial membrane potential but increased in nuclear condensation, polarization of F-actin, cell membrane permeability and cytochrome c expressions. Results also showed that α-tomatine induced activation of caspase-3, -8 and -9, suggesting that both intrinsic and extrinsic apoptosis pathways are involved. Furthermore, nuclear factor-kappa B (NF-κB) nuclear translocation was inhibited, which in turn resulted in significant decreased in NF-κB/p50 and NF-κB/p65 in the nuclear fraction of the treated cells compared to the control untreated cells. These results provide further insights into the molecular mechanism of the anti-proliferative actions of α-tomatine. CONCLUSION/SIGNIFICANCE: α-tomatine induces apoptosis and inhibits NF-κB activation on prostate cancer cells. These results suggest that α-tomatine may be beneficial for protection against prostate cancer development and progression

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies

    A Photomicroscopic Study on the Growth Rates of Calcium Oxalate Crystals in a New Synthetic Urine without Inhibitors and with Various Inhibitors

    No full text
    A photomicroscopic growth apparatus was used to study the growth rates of calcium oxalate crystals in a new synthetic urine without inhibitors and with various inhibitors, including magnesium ions, citrate ions, chondroitin sulfate ions, and phytate ions. The dependence of growth rates on supersaturation at different temperatures without inhibitors was investigated using a power law model in terms of the Arrhenius form. The effects of various inhibitors on the growth rates of calcium oxalate indicated that the inhibition of growth rates increases in the order magnesium ions < citrate ions < chondroitin sulfate ions < phytate ions. The polymorphic forms of calcium oxalate crystals without inhibitors and with various inhibitors were examined by scanning electron microscopy

    Interleukin-23 Mediates Osteoclastogenesis in Collagen-Induced Arthritis by Modulating MicroRNA-223

    No full text
    Interleukin-23 (IL-23) plays a pivotal role in rheumatoid arthritis (RA). IL-23 and microRNA-223 (miR-223) are both up-regulated and mediate osteoclastogenesis in mice with collagen-induced arthritis (CIA). The aim of this study was to examine the association between IL-23 and miR-223 in contributing to osteoclastogenesis and arthritis. Levels of IL-23p19 in joints of mice with CIA were determined. Lentiviral vectors expressing short hairpin RNA (shRNA) targeting IL-23p19 and lisofylline (LSF) were injected intraperitoneally into arthritic mice. Bone marrow-derived macrophages (BMMs) were treated with signal transducers and activators of transcription 4 (STAT4) specific shRNA and miR-223 sponge carried by lentiviral vectors in response to IL-23 stimulation. Treatment responses were determined by evaluating arthritis scores and histopathology in vivo, and detecting osteoclast differentiation and miR-223 levels in vitro. The binding of STAT4 to the promoter region of primary miR-223 (pri-miR-223) was determined in the Raw264.7 cell line. IL-23p19 expression was increased in the synovium of mice with CIA. Silencing IL-23p19 and inhibiting STAT4 activity ameliorates arthritis by reducing miR-223 expression. BMMs from mice in which STAT4 and miR-223 were silenced showed decreased osteoclast differentiation in response to IL-23 stimulation. IL-23 treatment increased the expression of miR-223 and enhanced the binding of STAT4 to the promoter of pri-miR-223. This study is the first to demonstrate that IL-23 promotes osteoclastogenesis by transcriptional regulation of miR-223 in murine macrophages and mice with CIA. Furthermore, our data indicate that LSF, a selective inhibitor of STAT4, should be an ideal therapeutic agent for treating RA through down-regulating miR-223-associated osteoclastogenesis

    Phosphodiesterase 4B is essential for lipopolysaccharide-induced CC chemokine ligand 3 production in mouse macrophages

    No full text
    Background: Phosphodiesterase 4 (PDE4) inhibitors negatively modulate many inflammatory responses, and some of these pharmacological effects are mediated by inhibition of PDE4B in inflammatory cells. While inactivation of PDE4B, but not other PDE4 isotypes, is known to inhibit lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α) production in macrophages, a cell type critical in mediating innate immunity, the impact of PDE4B on many other inflammatory responses in these cells remains largely unknown. Materials and Methods: To investigate whether PDE4B regulates additional inflammatory mediators other than TNF-α, in this study we initially used two-dimensional gel electrophoresis approach to screen the secreted proteins that are modulated by the PDE4 inhibitor rolipram in LPS-stimulated Raw 264.7 macrophages. Results: Three proteins were identified, of which the proinflammatory chemokine CC chemokine ligand 3 (CCL3) and cytokine TNF-α were downregulated and the antiinflammatory cytokine interleukin-1 receptor antagonist was upregulated. Further analysis on CCL3 production in mouse peritoneal macrophages revealed that the reduced CCL3 secretion was associated with a substantial decrease in CCL3 mRNA accumulation. The inhibitory effect of rolipram on CCL3 production was mimicked by the protein kinase A activator 6-Bnz-cAMP, but not the exchange protein directly activated by cAMP activator 8-pCPT-2′-O-Me-cAMP. Analysis of PDE4-deficient macrophages showed that ablation of only PDE4B reproduced the rolipram effect on CCL3 production. Moreover, PDE4 inhibitor potentially attenuates T-cell migration to CCL3 in inflammatory sites. Conclusions: These findings suggest that PDE4B may regulate the production of diverse inflammatory mediators in LPS-stimulated macrophages, and an inhibitor with PDE4B selectivity should retain the anti-inflammatory effects of nonselective PDE4 inhibitors in endotoxin-induced inflammatory conditions
    corecore